Page 39 - 《精细化工》2022年第10期
P. 39
第 10 期 王瑞雪,等: 水分解制氢中的电解液调控机制 ·1973·
中带来性能和稳定性上的差异。因此,调节电解液 [2] ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy,
性质适应电化学反应所需条件,同时最大限度地提 economy and storage: Review and recommendation[J]. International
Journal of Hydrogen Energy, 2019, 44: 15072-15086.
高系统效率是很有必要的。本文从 pH、阴阳离子对 [3] CAO J W (曹军文), ZHANG W Q (张文强), LI Y F (李一枫), et al.
电化学反应和物质传输影响的角度讨论了电解液在 Current status of hydrogen production in China[J]. Progress in
Chemistry (化学进展), 2021, 33(12): 2215-2244.
水分解反应中的作用机制。研究表明,电解液会以 [4] KUMAR S S, HIMABINDU V. Hydrogen production by PEM water
下列方式改变水分解反应系统的性能: electrolysis-A review[J]. Materials Science for Energy Technologies,
(1)pH 的变化影响电化学反应动力学。催化反 2019, 2: 442-454.
[5] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a
应存在最佳 pH,其值接近或等于关键中间体的 pK a , semiconductor electrode[J]. Nature, 1972, 238: 37-38.
在最佳 pH 下也存在着相应的最佳催化剂; [6] CHEN Y B, LV F, XIA H Y, et al. Modification of Ti-doped hematite
nanowires with a NiO x buffer layer for improved photoelectrochemical
(2)离子的特异性吸附可能对电极表面催化反
performance[J]. Applied Physics Letters, 2021, 119(8): 083901.
应位点造成阻塞,或与水合离子的相互作用,在表 [7] CHEN Y B, ZHENG W Y, MURCIA-LÓPEZ S, et al. Light
面上形成中间体改变反应条件,影响表面反应的路 management in photoelectrochemical water splitting from materials
to device engineering[J]. Journal of Materials Chemistry C, 2021,
径,进而改变反应性能; 9(11): 3726-3748.
(3)pH 及离子种类、浓度影响固液界面处和体 [8] CHEN Y B, XIA H Y, ZHANG W S, et al. Template synthesis of
相溶液中物质的传输,通过调整电解液的性质可优 porous hierarchical Cu 2ZnSnS 4 nanostructures for photoelectrochemical
water splitting[J]. International Journal of Hydrogen Energy, 2020,
化传质以改善反应性能,同时减少产物混合,尤其 46: 2862-2870.
是在近中性 pH 条件下。 [9] WU J Z, ZHENG W Y, CHEN Y B. Factors affecting the
cathode/electrolyte interfacial pH change during water reduction: A
对电解液特性和组分等的调控是改善反应性能 simulation study[J]. International Journal of Hydrogen Energy, 2022,
和提高系统稳定性的一种有前途的手段。 47: 18597-18605.
为达到碳中和目标,中国亟需实现能源结构转 [10] SHINAGAWA T, CAO Z, CAVALLO L, et al. Photophysics and
electrochemistry relevant to photocatalytic water splitting involved at
型和未来电力系统结构调整,可再生装机将远超当 solid-electrolyte interfaces[J]. Journal of Energy Chemistry, 2017,
前火电装机,现有技术水平下电化学储能和氢能具 26: 259-269.
[11] ZHONG W W, XIAO B B, LIN Z P, et al. RhSe 2: A superior 3D
有较强竞争力,氢能发展通常受到技术和电价成本
electrocatalyst with multiple active facets for hydrogen evolution
掣肘,随着未来光伏电价的下降,产氢成本的制约 reaction in both acid and alkaline solutions[J]. Advanced Materials,
将逐步减弱,技术的革新则显得更关键。发展新型 2021, 33: 2007894.
[12] HU C L, ZHANG L, GONG J L. Recent progress made in the
电解液将有望降低制氢成本、提高制氢效率,同时 mechanism comprehension and design of electrocatalysts for alkaline
在一定程度上避免极端 pH 产氢体系造成的污染问 water splitting[J]. Energy & Environmental Science, 2019, 12: 2620-
2645.
题并延长设备的使用寿命,通过技术创新推动中国
[13] MOHAMMED-IBRAHIM J, SUN X M. Recent progress on earth
新能源产业的发展。目前,许多研究在磷酸盐和硼 abundant electrocatalysts for hydrogen evolution reaction (HER) in
酸盐电解液体系中取得了进展,根据中国的原料优 alkaline medium to achieve efficient water splitting-A review[J].
Journal of Energy Chemistry, 2019, 34: 111-160.
势,在发展各类高效电催化剂(如锰基和铁基催化 [14] ANANTHARAJ S, NODA S, JOTHI V R, et al. Strategies and
剂)的同时开发磷酸盐体系的新型电解液将有望实 perspectives to catch the missing pieces in energy-efficient hydrogen
evolution reaction in alkaline media[J]. Angewandte Chemie
现低成本高效产氢。
International Edition, 2021, 60: 18981-19006.
另外,未来可考虑将溶液工程与局部场诱导传 [15] TAHIR M, TASLEEM S, TAHIR B. Recent development in band
质、微流道设计、反应器控温等传质工程方向进行 engineering of binary semiconductor materials for solar driven
photocatalytic hydrogen production[J]. International Journal of
耦合研究;同时关注催化剂与电解液相互作用的动 Hydrogen Energy, 2020, 45: 15985-16038.
态转变,开发适用于特定条件的催化剂,即电解液 [16] YANG Y, WEI Q Y, HOU J Y, et al. Solar concentrator with uniform
诱导的催化剂定向转化策略;以及进一步将溶液工 irradiance for particulate photocatalytic hydrogen production system[J].
International Journal of Hydrogen Energy, 2016, 41: 16040-16047.
程与催化剂表面的纳米工程、反应器设计的整体工 [17] GRIMM A, DE JONG W A, KRAMER G J. Renewable hydrogen
程相结合,将为开发高效水分解系统提供新思路。 production: A techno-economic comparison of photoelectrochemical
cells and photovoltaic-electrolysis[J]. International Journal of Hydrogen
因此,不仅要关注电催化剂,更要关注电解液,溶 Energy, 2020, 45: 22545-22555.
液工程仍有许多方面待研究,以进一步改善水分解 [18] LI J T, WU N Q. Semiconductor-based photocatalysts and
反应的性能,实现高效产氢。 photoelectrochemical cells for solar fuel generation: A review[J].
Catalysis Science & Technology, 2015, 5: 1360-1384.
[19] BONKE S A, WIECHEN M, MACFARLANE D R, et al. Renewable
参考文献:
fuels from concentrated solar power: Towards practical artificial
[1] DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen photosynthesis[J]. Energy & Environmental Science, 2015, 8: 2791-
production for energy: An overview[J]. International Journal of 2796.
Hydrogen Energy, 2020, 45: 3847-3869. [20] MCKONE J R, WARREN E L, BIERMAN M J, et al. Evaluation of