Page 39 - 《精细化工》2022年第10期
P. 39

第 10 期                         王瑞雪,等:  水分解制氢中的电解液调控机制                                   ·1973·


            中带来性能和稳定性上的差异。因此,调节电解液                             [2]   ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy,
            性质适应电化学反应所需条件,同时最大限度地提                                 economy and storage: Review and recommendation[J]. International
                                                                   Journal of Hydrogen Energy, 2019, 44: 15072-15086.
            高系统效率是很有必要的。本文从 pH、阴阳离子对                           [3]   CAO J W (曹军文), ZHANG W Q (张文强), LI Y F (李一枫), et al.
            电化学反应和物质传输影响的角度讨论了电解液在                                 Current status of  hydrogen production in China[J]. Progress in
                                                                   Chemistry (化学进展), 2021, 33(12): 2215-2244.
            水分解反应中的作用机制。研究表明,电解液会以                             [4]   KUMAR S S, HIMABINDU V. Hydrogen production by PEM water
            下列方式改变水分解反应系统的性能:                                      electrolysis-A review[J]. Materials Science for Energy Technologies,
                (1)pH 的变化影响电化学反应动力学。催化反                            2019, 2: 442-454.
                                                               [5]   FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a
            应存在最佳 pH,其值接近或等于关键中间体的 pK a ,                          semiconductor electrode[J]. Nature, 1972, 238: 37-38.
            在最佳 pH 下也存在着相应的最佳催化剂;                              [6]   CHEN Y B, LV F, XIA H Y, et al. Modification of Ti-doped hematite
                                                                   nanowires with a NiO x buffer layer for improved photoelectrochemical
                (2)离子的特异性吸附可能对电极表面催化反
                                                                   performance[J]. Applied Physics Letters, 2021, 119(8): 083901.
            应位点造成阻塞,或与水合离子的相互作用,在表                             [7]   CHEN Y B,  ZHENG W Y, MURCIA-LÓPEZ S,  et al. Light
            面上形成中间体改变反应条件,影响表面反应的路                                 management in photoelectrochemical water splitting from materials
                                                                   to device engineering[J]. Journal of Materials Chemistry C, 2021,
            径,进而改变反应性能;                                            9(11): 3726-3748.
                (3)pH 及离子种类、浓度影响固液界面处和体                        [8]   CHEN  Y  B, XIA  H Y, ZHANG W S, et al. Template synthesis of
            相溶液中物质的传输,通过调整电解液的性质可优                                 porous hierarchical Cu 2ZnSnS 4 nanostructures for photoelectrochemical
                                                                   water splitting[J]. International Journal of Hydrogen Energy, 2020,
            化传质以改善反应性能,同时减少产物混合,尤其                                 46: 2862-2870.
            是在近中性 pH 条件下。                                      [9]   WU J Z, ZHENG W  Y, CHEN Y B. Factors affecting the
                                                                   cathode/electrolyte interfacial pH change during water reduction: A
                 对电解液特性和组分等的调控是改善反应性能                              simulation study[J]. International Journal of Hydrogen Energy, 2022,
            和提高系统稳定性的一种有前途的手段。                                     47: 18597-18605.
                 为达到碳中和目标,中国亟需实现能源结构转                          [10]  SHINAGAWA T,  CAO Z, CAVALLO L,  et al. Photophysics and
                                                                   electrochemistry relevant to photocatalytic water splitting involved at
            型和未来电力系统结构调整,可再生装机将远超当                                 solid-electrolyte interfaces[J]. Journal  of Energy Chemistry, 2017,
            前火电装机,现有技术水平下电化学储能和氢能具                                 26: 259-269.
                                                               [11]  ZHONG W W, XIAO B B,  LIN Z P,  et al. RhSe 2: A superior 3D
            有较强竞争力,氢能发展通常受到技术和电价成本
                                                                   electrocatalyst with multiple active facets for  hydrogen evolution
            掣肘,随着未来光伏电价的下降,产氢成本的制约                                 reaction in both acid and alkaline solutions[J]. Advanced Materials,
            将逐步减弱,技术的革新则显得更关键。发展新型                                 2021, 33: 2007894.
                                                               [12]  HU  C  L, ZHANG L, GONG J L.  Recent progress made in the
            电解液将有望降低制氢成本、提高制氢效率,同时                                 mechanism comprehension and design of electrocatalysts for alkaline
            在一定程度上避免极端 pH 产氢体系造成的污染问                               water splitting[J]. Energy & Environmental Science, 2019, 12: 2620-
                                                                   2645.
            题并延长设备的使用寿命,通过技术创新推动中国
                                                               [13]  MOHAMMED-IBRAHIM J, SUN  X  M. Recent progress on earth
            新能源产业的发展。目前,许多研究在磷酸盐和硼                                 abundant electrocatalysts for hydrogen evolution reaction (HER) in
            酸盐电解液体系中取得了进展,根据中国的原料优                                 alkaline medium to achieve efficient water splitting-A  review[J].
                                                                   Journal of Energy Chemistry, 2019, 34: 111-160.
            势,在发展各类高效电催化剂(如锰基和铁基催化                             [14]  ANANTHARAJ S, NODA S, JOTHI V R,  et al. Strategies and
            剂)的同时开发磷酸盐体系的新型电解液将有望实                                 perspectives to catch the missing pieces in energy-efficient hydrogen
                                                                   evolution reaction in alkaline media[J]. Angewandte Chemie
            现低成本高效产氢。
                                                                   International Edition, 2021, 60: 18981-19006.
                 另外,未来可考虑将溶液工程与局部场诱导传                          [15]  TAHIR M, TASLEEM S, TAHIR B.  Recent development in band
            质、微流道设计、反应器控温等传质工程方向进行                                 engineering  of binary semiconductor materials for  solar driven
                                                                   photocatalytic hydrogen production[J]. International Journal of
            耦合研究;同时关注催化剂与电解液相互作用的动                                 Hydrogen Energy, 2020, 45: 15985-16038.
            态转变,开发适用于特定条件的催化剂,即电解液                             [16]  YANG Y, WEI Q Y, HOU J Y, et al. Solar concentrator with uniform
            诱导的催化剂定向转化策略;以及进一步将溶液工                                 irradiance for particulate photocatalytic hydrogen production system[J].
                                                                   International Journal of Hydrogen Energy, 2016, 41: 16040-16047.
            程与催化剂表面的纳米工程、反应器设计的整体工                             [17]  GRIMM A, DE JONG W A, KRAMER G J. Renewable hydrogen
            程相结合,将为开发高效水分解系统提供新思路。                                 production: A techno-economic comparison of photoelectrochemical
                                                                   cells and photovoltaic-electrolysis[J]. International Journal of Hydrogen
            因此,不仅要关注电催化剂,更要关注电解液,溶                                 Energy, 2020, 45: 22545-22555.
            液工程仍有许多方面待研究,以进一步改善水分解                             [18]  LI J  T,  WU N Q. Semiconductor-based photocatalysts and
            反应的性能,实现高效产氢。                                          photoelectrochemical cells for solar fuel generation: A review[J].
                                                                   Catalysis Science & Technology, 2015, 5: 1360-1384.
                                                               [19]  BONKE S A, WIECHEN M, MACFARLANE D R, et al. Renewable
            参考文献:
                                                                   fuels from concentrated solar power: Towards practical artificial
            [1]   DAWOOD F,  ANDA M, SHAFIULLAH G  M.  Hydrogen    photosynthesis[J]. Energy & Environmental Science, 2015, 8: 2791-
                 production for energy:  An overview[J]. International  Journal of   2796.
                 Hydrogen Energy, 2020, 45: 3847-3869.         [20]  MCKONE J R, WARREN E L, BIERMAN M J, et al. Evaluation of
   34   35   36   37   38   39   40   41   42   43   44