Page 161 - 《精细化工》2022年第11期
P. 161

第 11 期             朱敬洋,等: NIR 光响应型 PNIPAM-co-AA/GO 复合体系的制备及药物释放                         ·2311·


            3   结论                                             [13]  YIN W Y, YAN L, YU J, et al. High-throughput synthesis of single-
                                                                   layer MoS 2 nanosheets as a near-infrared photothermal-triggered drug
                                                                   delivery for effective cancer  therapy[J]. ACS Nano,  2014,  8(7):
                (1)采用乳液聚合法制备了不同 AA 含量的                             6922-6933.
            PNIPAM-co-AA 微凝胶,其均具有灵敏的温度敏感性                      [14]  LAI Y (来旖). Construction of near-infrared light nanotransducers for
                                                                   biomedical applications[D]. Shanghai: East China Normal University
            和 pH 敏感性,PNIPAM-co-AA 5%的 LCST 为 40 ℃。                 (华中师范大学), 2021.
                (2)在微凝胶中引入 GO 制备得到 PNIPAM-                     [15]  MIAO H, SHEN R, ZHANG W, et al. Near-infrared light triggered
                                                                   silk fibroin scaffold for  photothermal therapy and  tissue repair of
            co-AA/GO 复合体系,该体系具有 NIR 响应性能,                          bone tumors[J]. Advanced Functional Materials, 2021, 31(10): 1-9.
            光热转化性能稳定。                                          [16]  YAO S T, JIN X K, WANG  C,  et al. ICG/5-Fu coencapsulated
                                                                   temperature stimulus response nanogel drug delivery platform for
                (3)PNIPAM-co-AA/GO(AA 与 GO 含量均为
                                                                   chemo-photothermal/photodynamic synergetic therapy[J]. Journal of
            5%)复合体系在 pH 7.4,25  ℃,有 NIR 光条件下,                      Biomaterials Applications, 2021, 36(4): 1-14.
            24 h 后累积释放率达到 77.24%,且 GO 的存在使释                    [17]  WEI C,  WANG P, HUANG Z,  et al. Construction of surface-
                                                                   modified polydopamine nanoparticles for sequential drug release and
            药平衡时间滞后,更有利于药物的控制释放。                                   combined chemo-photothermal cancer therapy[J].  Molecular
                (4)PNIPAM-co-AA/GO 复合体系的药物输送                       Pharmaceutics, 2021, 18(3): 1327-1343.
                                                               [18]  HAO L Y, SONG  H J, ZHAN Z  X, et al. Multifunctional reduced
            基于 pH、NIR、温度多种刺激方式的联级合作响应,                             graphene oxide-based nanoplatform for synergistic targeted chemo-
            相对于单一的 PNIPAM 微凝胶,是一种可控、便捷                             photothermal therapy[J]. ACS  Applied Bio Materials, 2020, 3(8):
                                                                   5213-5222.
            的新型智能释药体系。关于复合体系在人体内外的                             [19]  KIM Y S,  KIM  M A, LEE C M.  Controlled drug release from
            安全性问题还在进一步研究中,后期工作将会深入                                 PNIPAM-incorporated melanin nanovesicles by photo-stimulation[J].
                                                                   Materials Technology, 2019, 34(11): 639-644.
            进行探讨。                                              [20]  MAIO A, PIBIRI I, MORREALE  M,  et al. An overview of
                                                                   functionalized graphene nanomaterials for advanced applications[J].
            参考文献:                                                  Nanomaterials, 2021, 11(7): 1717-1749.
                                                               [21]  JAIN  V P, CHAUDHARY S, SHARMA D,  et al. Advanced
            [1]   HOFFMAN A S. The origins and evolution  of "controlled" drug
                 delivery systems[J]. Journal of Controlled Release Official Journal of   functionalized nanographene oxide as a biomedical agent for drug
                 the Controlled Release Society, 2008, 132(3): 153-163.   delivery and anti-cancerous therapy: A review[J]. European Polymer
            [2]   PARK K. Facing the truth about nanotechnology in drug delivery[J].   Journal, 2020, 142(1): 110124.
                 ACS Nano, 2013, 7(9): 7442-7447.              [22]  FANG L, LI F,  WANG L L,  et al. A  model for photothermal
            [3]   MUTHARANI B,  RANGANATHAN  P, CHEN S M. Temperature-   conversion of graphene-filled nanocomposites under NIR irradiation
                                                                   [J]. Smart Materials and Structures, 2020, 29(12): 127001.
                 reversible  switched antineoplastic  drug 5-fluorouracil electrochemical   [23]  SHI D, ZHUANG J Y, FAN Z X, et al. Self-targeting nanotherapy
                 sensor based on adaptable thermo-sensitive microgel encapsulated   based  on  functionalized  graphene  oxide  for  synergistic
                 PEDOT[J]. Sensors and Actuators, 2020, 304(2): 127361.
            [4]   TZOUNIS L, DOÑA M, LÓPEZ-ROMERO J M, et al. Temperature-   thermochemotherapy[J]. Journal of Colloid and Interface Science,
                                                                   2021, 603: 70-84.
                 controlled catalysis by core-shell-satellite AuAg@pNIPAM@Ag hybrid   [24]  CAO  Y, CHENG Y, ZHAO  G. Near-infrared light-, magneto-, and
                 microgels: A highly efficient catalytic thermoresponsive nanoreactor   pH-responsive  GO-Fe 3O 4/poly(N-isopropylacrylamide)/alginate
                 [J]. ACS Applied Materials and Interfaces, 2019, 11(32): 10073.   nanocomposite hydrogel microcapsules for controlled drug release[J].
            [5]   HUANG J,  GENG X, TISSUE B M,  et al. Microgels from   Langmuir, 2021, 37(18): 5522-5530.
                 hydrophobic solid monomers  via  miniemulsion polymerization for   [25]  XU F, ZHANG B X,  LUO Y L. Thermosensitive P(NIPAM-co-
                 aqueous lead and  copper ion removal[J]. Reactive and Functional   AM)-b-PLA block copolymer micelles for applications in intracellular
                 Polymers, 2018, 133(12): 136-142.                 drug delivery[J]. Journal of Drug Delivery Science and Technology,
            [6]   WEI M L, GAO Y F, LI X, et al. Stimuli-responsive polymers and   2014, 24(2): 136-142.
                 their applications[J]. Polymer Chemistry, 2017, 1(8): 127-143.   [26]  ZHANG W  L, AI S L, JI P,  et al. Photothermally enhanced
            [7]   LIU J R (刘俊任), WANG F (王锋), PAN Y F (潘远凤). Multi-   chemotherapy delivered by graphene oxide-based multiresponsive
                 responsive nanogels for doxorubicin hydrochloride delivery[J]. Fine   nanogels[J]. ACS Applied Bio Materials, 2019, 2(1): 330-338.
                 Chemicals (精细化工), 2020, 37(12): 2554-2561.    [27]  DEB A, VIMALA R. Camptothecin loaded graphene oxide nanoparticle
            [8]   PELTON R H,  CHIBANTE P. Preparation  of aqueous latices with   functionalized with polyethylene glycol and folic acid for anticancer
                 N-isopropylacrylamide[J]. Colloids and Surfaces, 1986, 20(3): 247-256.   drug delivery[J]. Journal of Drug Delivery Science and Technology,
            [9]   MATSUMURA Y, WAI K. Thermo-responsive behavior and   2018, 43: 333-342.
                 microenvironments of poly(N-isopropylacrylamide) microgel particles   [28]  TUNG V C, ALLEN M J, YANG Y Y, et al. High-throughput solution
                 as studied  by fluorescent label method[J]. Colloid Interface, 2006,   processing  of large-scale  graphene[J]. Nature Nanotechnology,  2009,
                 296(1): 102-109.                                  4(1): 25-29.
            [10]  TANAKA T, FILLMORE D. Kinetics of swelling of gels[J]. The   [29]  SÁNCHEZ-MORENO P,  VICENTE J D, NARDECCHIA S,  et al.
                 Journal of Chemical Physics, 1979, 70(3): 1214-1218.   Thermo-sensitive nanomaterials: Recent advance in synthesis and
            [11]  LI P H, XU R  Z, WANG W H,  et al. Thermosensitive poly   biomedical applications[J]. Nanomaterials, 2018, 8(11): 935-967.
                 (N-isopropylacrylamide-co-glycidyl methacrylate)  microgels for   [30] FU Z (付梓), ZHANG X J (张雪静), ZHU L M (朱利民). Preparation
                 controlled  drug release[J].  Colloids and Surfaces B: Biointerfaces,   and  in vitro drug release of functionalized boron dual drug-loaded
                 2013, 1(101): 251-255.                            nanocomposite[J]. Fine Chemicals (精细化工), 2020, 37(4): 779-792.
            [12]  METAWEA O R M, ABDELMONEEM M A, HAIBA N S, et al. A   [31]  LIU L, ZENG J, ZHAO X B, et al. Independent temperature and pH
                 novel 'smart' PNIPAM-based copolymer for breast cancer targeted   dual-responsive PMAA/PNIPAM microgels as drug delivery system:
                 therapy: Synthesis, and characterization of dual  pH/temperature-   Effect of swelling behavior of the core and shell  materials in
                 responsive lactoferrin-targeted PNIPAM-co-AA[J]. Colloids and   fabrication process[J]. Colloids and Surfaces A: Physicochemical and
                 Surfaces B: Biointerfaces, 2021, 202: 111694.     Engineering Aspects, 2016, 526: 7-14.
   156   157   158   159   160   161   162   163   164   165   166