Page 161 - 《精细化工》2022年第11期
P. 161
第 11 期 朱敬洋,等: NIR 光响应型 PNIPAM-co-AA/GO 复合体系的制备及药物释放 ·2311·
3 结论 [13] YIN W Y, YAN L, YU J, et al. High-throughput synthesis of single-
layer MoS 2 nanosheets as a near-infrared photothermal-triggered drug
delivery for effective cancer therapy[J]. ACS Nano, 2014, 8(7):
(1)采用乳液聚合法制备了不同 AA 含量的 6922-6933.
PNIPAM-co-AA 微凝胶,其均具有灵敏的温度敏感性 [14] LAI Y (来旖). Construction of near-infrared light nanotransducers for
biomedical applications[D]. Shanghai: East China Normal University
和 pH 敏感性,PNIPAM-co-AA 5%的 LCST 为 40 ℃。 (华中师范大学), 2021.
(2)在微凝胶中引入 GO 制备得到 PNIPAM- [15] MIAO H, SHEN R, ZHANG W, et al. Near-infrared light triggered
silk fibroin scaffold for photothermal therapy and tissue repair of
co-AA/GO 复合体系,该体系具有 NIR 响应性能, bone tumors[J]. Advanced Functional Materials, 2021, 31(10): 1-9.
光热转化性能稳定。 [16] YAO S T, JIN X K, WANG C, et al. ICG/5-Fu coencapsulated
temperature stimulus response nanogel drug delivery platform for
(3)PNIPAM-co-AA/GO(AA 与 GO 含量均为
chemo-photothermal/photodynamic synergetic therapy[J]. Journal of
5%)复合体系在 pH 7.4,25 ℃,有 NIR 光条件下, Biomaterials Applications, 2021, 36(4): 1-14.
24 h 后累积释放率达到 77.24%,且 GO 的存在使释 [17] WEI C, WANG P, HUANG Z, et al. Construction of surface-
modified polydopamine nanoparticles for sequential drug release and
药平衡时间滞后,更有利于药物的控制释放。 combined chemo-photothermal cancer therapy[J]. Molecular
(4)PNIPAM-co-AA/GO 复合体系的药物输送 Pharmaceutics, 2021, 18(3): 1327-1343.
[18] HAO L Y, SONG H J, ZHAN Z X, et al. Multifunctional reduced
基于 pH、NIR、温度多种刺激方式的联级合作响应, graphene oxide-based nanoplatform for synergistic targeted chemo-
相对于单一的 PNIPAM 微凝胶,是一种可控、便捷 photothermal therapy[J]. ACS Applied Bio Materials, 2020, 3(8):
5213-5222.
的新型智能释药体系。关于复合体系在人体内外的 [19] KIM Y S, KIM M A, LEE C M. Controlled drug release from
安全性问题还在进一步研究中,后期工作将会深入 PNIPAM-incorporated melanin nanovesicles by photo-stimulation[J].
Materials Technology, 2019, 34(11): 639-644.
进行探讨。 [20] MAIO A, PIBIRI I, MORREALE M, et al. An overview of
functionalized graphene nanomaterials for advanced applications[J].
参考文献: Nanomaterials, 2021, 11(7): 1717-1749.
[21] JAIN V P, CHAUDHARY S, SHARMA D, et al. Advanced
[1] HOFFMAN A S. The origins and evolution of "controlled" drug
delivery systems[J]. Journal of Controlled Release Official Journal of functionalized nanographene oxide as a biomedical agent for drug
the Controlled Release Society, 2008, 132(3): 153-163. delivery and anti-cancerous therapy: A review[J]. European Polymer
[2] PARK K. Facing the truth about nanotechnology in drug delivery[J]. Journal, 2020, 142(1): 110124.
ACS Nano, 2013, 7(9): 7442-7447. [22] FANG L, LI F, WANG L L, et al. A model for photothermal
[3] MUTHARANI B, RANGANATHAN P, CHEN S M. Temperature- conversion of graphene-filled nanocomposites under NIR irradiation
[J]. Smart Materials and Structures, 2020, 29(12): 127001.
reversible switched antineoplastic drug 5-fluorouracil electrochemical [23] SHI D, ZHUANG J Y, FAN Z X, et al. Self-targeting nanotherapy
sensor based on adaptable thermo-sensitive microgel encapsulated based on functionalized graphene oxide for synergistic
PEDOT[J]. Sensors and Actuators, 2020, 304(2): 127361.
[4] TZOUNIS L, DOÑA M, LÓPEZ-ROMERO J M, et al. Temperature- thermochemotherapy[J]. Journal of Colloid and Interface Science,
2021, 603: 70-84.
controlled catalysis by core-shell-satellite AuAg@pNIPAM@Ag hybrid [24] CAO Y, CHENG Y, ZHAO G. Near-infrared light-, magneto-, and
microgels: A highly efficient catalytic thermoresponsive nanoreactor pH-responsive GO-Fe 3O 4/poly(N-isopropylacrylamide)/alginate
[J]. ACS Applied Materials and Interfaces, 2019, 11(32): 10073. nanocomposite hydrogel microcapsules for controlled drug release[J].
[5] HUANG J, GENG X, TISSUE B M, et al. Microgels from Langmuir, 2021, 37(18): 5522-5530.
hydrophobic solid monomers via miniemulsion polymerization for [25] XU F, ZHANG B X, LUO Y L. Thermosensitive P(NIPAM-co-
aqueous lead and copper ion removal[J]. Reactive and Functional AM)-b-PLA block copolymer micelles for applications in intracellular
Polymers, 2018, 133(12): 136-142. drug delivery[J]. Journal of Drug Delivery Science and Technology,
[6] WEI M L, GAO Y F, LI X, et al. Stimuli-responsive polymers and 2014, 24(2): 136-142.
their applications[J]. Polymer Chemistry, 2017, 1(8): 127-143. [26] ZHANG W L, AI S L, JI P, et al. Photothermally enhanced
[7] LIU J R (刘俊任), WANG F (王锋), PAN Y F (潘远凤). Multi- chemotherapy delivered by graphene oxide-based multiresponsive
responsive nanogels for doxorubicin hydrochloride delivery[J]. Fine nanogels[J]. ACS Applied Bio Materials, 2019, 2(1): 330-338.
Chemicals (精细化工), 2020, 37(12): 2554-2561. [27] DEB A, VIMALA R. Camptothecin loaded graphene oxide nanoparticle
[8] PELTON R H, CHIBANTE P. Preparation of aqueous latices with functionalized with polyethylene glycol and folic acid for anticancer
N-isopropylacrylamide[J]. Colloids and Surfaces, 1986, 20(3): 247-256. drug delivery[J]. Journal of Drug Delivery Science and Technology,
[9] MATSUMURA Y, WAI K. Thermo-responsive behavior and 2018, 43: 333-342.
microenvironments of poly(N-isopropylacrylamide) microgel particles [28] TUNG V C, ALLEN M J, YANG Y Y, et al. High-throughput solution
as studied by fluorescent label method[J]. Colloid Interface, 2006, processing of large-scale graphene[J]. Nature Nanotechnology, 2009,
296(1): 102-109. 4(1): 25-29.
[10] TANAKA T, FILLMORE D. Kinetics of swelling of gels[J]. The [29] SÁNCHEZ-MORENO P, VICENTE J D, NARDECCHIA S, et al.
Journal of Chemical Physics, 1979, 70(3): 1214-1218. Thermo-sensitive nanomaterials: Recent advance in synthesis and
[11] LI P H, XU R Z, WANG W H, et al. Thermosensitive poly biomedical applications[J]. Nanomaterials, 2018, 8(11): 935-967.
(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for [30] FU Z (付梓), ZHANG X J (张雪静), ZHU L M (朱利民). Preparation
controlled drug release[J]. Colloids and Surfaces B: Biointerfaces, and in vitro drug release of functionalized boron dual drug-loaded
2013, 1(101): 251-255. nanocomposite[J]. Fine Chemicals (精细化工), 2020, 37(4): 779-792.
[12] METAWEA O R M, ABDELMONEEM M A, HAIBA N S, et al. A [31] LIU L, ZENG J, ZHAO X B, et al. Independent temperature and pH
novel 'smart' PNIPAM-based copolymer for breast cancer targeted dual-responsive PMAA/PNIPAM microgels as drug delivery system:
therapy: Synthesis, and characterization of dual pH/temperature- Effect of swelling behavior of the core and shell materials in
responsive lactoferrin-targeted PNIPAM-co-AA[J]. Colloids and fabrication process[J]. Colloids and Surfaces A: Physicochemical and
Surfaces B: Biointerfaces, 2021, 202: 111694. Engineering Aspects, 2016, 526: 7-14.