Page 130 - 《精细化工》2022年第12期
P. 130

·2496·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 由图 6 可以看出,催化剂循环使用 4 次,催化                      [3]  HUA  B  (华兵). Optimization of preparation conditions of Pd /C catalyst
                                                                   and its application in 4-aminodiphenylamine production process[J].
            活性几乎不变,说明催化剂具有很高的稳定性,这
                                                                   Energy Chemical Industry (能源化工), 2019, 40(2): 33-37.
            主要得益于 SiO 2 纳米球的良好保护作用。为了进一                        [4]   DONG C Y, LI Y L, CHENG D Y, et al. Supported metal clusters:
            步检验 Pd 亚纳米簇@SiO 2 催化芳香硝基化合物选                           Fabrication and application in heterogeneous catalysis[J]. ACS
                                                                   Catalysis, 2020, 10(19): 11011-11045.
            择性加氢还原反应的底物适用性,对连接不同取代                             [5]   KIBATA T, MITSUDOME T, MIZUGAKI T, et al. Investigation of
            基的硝基苯底物进行了选择性加氢还原反应,结果                                 size-dependent  properties of  sub-nanometer palladium clusters
                                                                   encapsulated within a polyamine dendrimer[J]. Chemical Communications,
            列于表 2。可以看出,反应产率均高于 98%,证明
                                                                   2013, 49(2): 167-169.
            Pd 亚纳米簇@SiO 2 可用于其他硝基物的加氢。                         [6]   HUDA  M, MINAMISAWA K, TSUKAMOTO T,  et al. Aerobic
                                                                   toluene oxidation catalyzed by subnano metal particles[J]. Angewandte
            表 2  Pd 亚纳米簇@SiO 2 催化剂催化芳香硝基化合物进                       Chemie International Edition, 2019, 58(4): 1002-1006.
                                                               [7]   TIAN P F, OUYANG L K, XU X Y, et al. The origin of palladium
                 行加氢反应生成相应的芳胺化合物的底物拓展
                                                                   particle size  effects in the direct synthesis of H 2O 2: Is smaller
            Table 2    Substrate expansion of the hydrogenation of aromatic   better?[J]. Journal of Catalysis, 2017, 349: 30-40.
                                                               [8]  GAO R  (高睿), HAN M L (韩美玲), HUANG L L (黄丽丽), et al.
                    nitro compounds with subnano-Pd@SiO 2
                    底物              产物           产率/%              Synthesis and catalytic activity of hollow nano Ni@SiO 2 composites[J].
                                                                   Fine Chemicals (精细化工), 2022, 39(1): 74-79.
                对硝基甲苯            对甲苯胺            100.0
                                                               [9]   WANG J S, SHAH Z H, ZHANG S F, et al. Silica-based nanocomposites
                对氟硝基苯            对氟苯胺             98.7             via reverse microemulsions: Classifications, preparations, and
                对乙酰硝基苯           对乙酰苯胺            98.5             applications[J]. Nanoscale, 2014, 6(9): 4418-4437.
                                                               [10]  WANG J S, WU  W P, YE H  Y,  et al. MoO 3 subnanoclusters on
                 注:反应条件为 0.1 mmol 底物,5 mg 催化剂,0.05 mmol
                                                                   ultrasmall mesoporous silica nanoparticles: An efficient catalyst for
            联苯,1 mL 乙醇,1 MPa H 2,50  ℃,4 h;反应产率由气相色谱
                                                                   oxidative desulfurization[J]. RSC Advances, 2017, 7(71): 44827-44833.
            内标法计算。                                             [11]  WANG J S, LI X, ZHANG S F, et al. Facile synthesis of ultrasmall
                                                                   monodisperse "raisin-bun"-type MoO 3/SiO 2 nanocomposites with
                                                                   enhanced catalytic properties[J]. Nanoscale, 2013, 5(11): 4823-4828.
            3   结论                                             [12]  WANG J S, JIN H H, WANG W H, et al. Ultrasmall Ni-ZnO/SiO 2
                                                                   synergistic catalyst for highly efficient hydrogenation of NaHCO 3 to
                                                                   formic acid[J]. ACS Applied Materials & Interfaces, 2020, 12(17):
                 采用反相微乳液法,在 CTAB/正丁醇/环己烷体
                                                                   19581-19586.
            系中制得 Pd 亚纳米簇,并原位包覆在 SiO 2 球壳中                      [13]  JIN H H, WANG J S, WANG W  H,  et al. Enhancing the activity,
            得到 Pd 亚纳米簇@SiO 2 多核壳材料。经测定,Pd                          stability and retainability of Ni-ZnO/SiO 2 for CO 2 utilization by
                                                                   amino-functionalization[J]. Catalysis  Communications, 2020, 141:
            粒子的平均粒径为 0.7 nm,Pd 粒子均匀地分散在整                           106013.
            个 SiO 2 球壳中,且 Pd 质量分数为 4%。将制备的                     [14]  ALMANA  N, PHIVILAY S P, LAVEILLE P,  et al. Design of a
            Pd 亚纳米簇@SiO 2 材料作为催化剂用于 4 种芳香硝                         core-shell Pt-SiO 2 catalyst in a reverse microemulsion system:
                                                                   Distinctive kinetics on CO oxidation at low temperature[J]. Journal
            基化合物的加氢反应中,在 50  ℃、1 MPa 的温和
                                                                   of Catalysis, 2016, 340: 368-375.
            条件下芳胺产率均高于 98%,说明 Pd 亚纳米簇                          [15]  MAO L P (毛丽萍), LIANG Y L (梁亚澜), WANG Y (汪毅), et al.
            @SiO 2 对于硝基的加氢具有很好的应用前景。                               Synthesis of supported  Pd@CMP-1 catalyst and its catalytic
                                                                   hydrogenation of nitro aromatic compound[J]. Chemical Industry and
            参考文献:                                                  Engineering Progress (化工进展), 2015, 34(8): 3054-3059.
                                                               [16]  WEI Z J, THUSHARA D, LI X H, et al. Ligand-controlled fabrication
            [1]   SHI Z P (石至平), ZHOU  X Q (周雪琴), XU F (许芳),  et al.
                 Continuous-flow diazotization of slightly soluble dichlorobenzidine[J].   of core-shell  PdNi bimetallic nanoparticles as a highly efficient
                 Fine Chemicals (精细化工), 2020, 37(5): 1051-1055.    hydrogenation catalyst[J]. Catalysis Communications, 2017, 98: 61-65.
            [2]   ISLAM D  A,  ACHARYA H. Pd-nanoparticles@layered double   [17]  WANG G H,  CHEN K, ENGELHARDT J,  et al. Scalable one-pot
                 hydroxide/reduced graphene oxide (Pd NPs@LDH/rGO) nanocomposite   synthesis of yolk-shell carbon  nanospheres with yolk-supported  Pd
                 catalysts for highly  efficient green reduction of aromatic nitro   nanoparticles for size-selective catalysis[J]. Chemistry of Materials,
                 compounds[J]. New Journal of Chemistry, 2022, 46(11): 5346-5354.   2018, 30(8): 2483-2487.
   125   126   127   128   129   130   131   132   133   134   135