Page 132 - 《精细化工》2022年第2期
P. 132
·336· 精细化工 FINE CHEMICALS 第 39 卷
psilostachya auct. non L.)[J]. Journal of Essential Oil Research, 1996, 4-ol[J]. Journal of Northwest A & F University: Natural Science Edition
8(5): 559-561. (西北农林科技大学学报: 自然科学版), 2004, 32(8): 130-134.
[19] ZHANG L J (张丽佳), XUE Y (薛银), ZHANG C R (张岑容), et al. [23] XIAO Y S (肖宇硕), LU J Q (卢金清), MENG J M (孟佳敏), et al.
Antibacterial and antiinflammatory effects of eucalyptol[J]. Chinese Comparative analysis of volatile oil in Artemisia argyi Folium produced
Journal of Veterinary Drug (中国兽药杂志), 2013, 47(3): 21-24. in Qichun and some other areas by GC-MS[J]. China Pharmacist (中
[20] SEOL G H, KIM K Y. Eucalyptol and its role in chronic diseases[C]// 国药师), 2018, 21(3): 404-425.
GUPTA S C, et al. Drug discovery from mother nature, advances in [24] PELKONEN O, ABASS K, WIESNER J. Thujone and thujone-
experimental medicine and biology 929. Switzerland: Springer containing herbal medicinal and botanical products: Toxicological
International Publishing, 2016: 389-398. assessment[J]. Regulatory Toxicology and Pharmacology, 2013,
[21] OU M (欧明), LIN L (林励), LI Y W (李衍文). Handbook of brachylogy 65(1): 100-107.
component of Chinese traditional drugs[M]. Beijing: China Medical [25] LIU B M (刘布鸣), CHAI L (柴玲), LIN X (林霄), et al. Preparation
Science Press (中国医药科技出版社), 2003: 101-103. of a reconstructed oil of cineole-terpineol type and study on its
[22] CHEN G Q (陈根强), FENG J T (冯俊涛), CHEN A L (陈安良), et al. antibacterial effect[J]. Flavour Fragrance Cosmetics (香料香精化妆
Research progress on the ingredient of plant essential oil—Terpinen- 品), 2016, (5): 25-30.
(上接第 287 页) dissolution in potassium manganate with rich oxygen defects engaged
[12] JIANG H M, ZHANG Y F, PAN Z H, et al. Facile hydrothermal high-energy-density and durable aqueous zinc-ion battery[J].
synthesis and electrochemical properties of (NH 4) 2V 10O 25•8H 2O Advanced Functional Materials, 2019, 29(15): 1808375.
nanobelts for high-performance aqueous zinc ion batteries[J]. [20] CAO J, ZHANG D D, YUE Y L, et al. Oxygen defect enriched
Electrochimica Acta, 2020, 332: 135506. (NH 4) 2V 10O 25•8H 2O nanosheets for superior aqueous zinc-ion
[13] WEI T Y, LI Q, YANG G Z, et al. Highly reversible and long-life batteries[J]. Nano Energy, 2021, 84: 105876.
cycling aqueous zinc-ion battery based on ultrathin (NH 4) 2V 10O 25•8H 2O [21] ZHOU J, SHAN L T, WU Z X, et al. Investigation of V 2O 5 as a
nanobelts[J]. Journal of Materials Chemistry A, 2018, 6(41): 20402- 20410. low-cost rechargeable aqueous zinc ion battery cathode[J]. Chemical
[14] TANG B Y, ZHOU J, FANG G Z, et al. Structural modification of Communications, 2018, 54(35): 4457-4460.
V 2O 5 as high-performance aqueous zinc-ion battery cathode[J]. [22] JIANG W W, XU X J, LIU Y X, et al. Facile plasma treated
Journal of the Electrochemical Society, 2019, 166(4): A480-A486. β-MnO 2@C hybrids for durable cycling cathodes in aqueous Zn-ion
+
[15] YANG Y Q, TANG Y, FANG G Z, et al. Li intercalated V 2O 5•nH 2O batteries[J]. Journal of Alloys Compounds, 2020, 827: 154273.
with enlarged layer spacing and fast ion diffusion as an aqueous [23] HE P, YAN M Y, ZHANG G B, et al. Layered VS 2 nanosheet-based
zinc-ion battery cathode[J]. Energy & Environmental Science, 2018, aqueous Zn ion battery cathode[J]. Advanced Energy Materials,
11(11): 3157-3162. 2017, 7(11): 1601920.
[16] HE P, ZHANG G B, LIAO X B, et al. Sodium ion stabilized [24] KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and
vanadium oxide nanowire cathode for high-performance zinc-ion long-life aqueous rechargeable zinc battery using a metal oxide
batteries[J]. Advanced Energy Materials, 2018, 8(10): 1702463. intercalation cathode[J]. Nature Energy, 2016, 1(10): 1-8.
[17] LI S, CHEN M H, FANG G Z, et al. Synthesis of polycrystalline [25] NGO D T, LE H T, KIM C, et al. Mass-scalable synthesis of 3D
K 0.25V 2O 5 nanoparticles as cathode for aqueous zinc-ion battery[J]. porous germanium-carbon composite particles as an ultra-high rate
Journal of Alloys and Compounds, 2019, 801: 82-89. anode for lithium ion batteries[J]. Energy Environmental Science,
[18] HAO Y, ZHANG S M, TAO P, et al. Pillaring effect of K ion 2015, 8(12): 3577-3588.
anchoring for stable V 2O 5-based zinc-ion battery cathodes[J]. [26] CHEN J, LI S, KUMAR V, et al. Carbon coated bimetallic sulfide
ChemNanoMat, 2020, 6(5): 797-805. hollow nanocubes as advanced sodium ion battery anode[J].
[19] FANG G Z, ZHU C Y, CHEN M H, et al. Suppressing manganese Advanced Energy Materials, 2017, 7(19): 1700180.
(上接第 312 页) between donor and acceptor in organoboron emitters[J]. ACS Applied
Materials & Interfaces, 2019, 11(11): 10768-10776.
[3] IM Y, KIM M, CHO Y J, et al. Molecular design strategy of organic
thermally activated delayed fluorescence emitters[J]. Chemistry of [10] TAN Y, RUI B, LI J Y, et al. Blue thermally activated delayed
Materials, 2017, 29(5): 1946-1963. fluorescence emitters based on a constructing strategy with diversed
[4] CAI X Y, SU S J. Marching toward highly efficient, pure-blue, and donors and oxadiazole acceptor and their efficient electroluminescent
stable thermally activated delayed fluorescent organic light-emitting devices[J]. Optical Materials, 2019, 94: 103-112.
diodes[J]. Advanced Functional Materials, 2018, 28(43): 1802558. [11] WONG M Y, KROTKUS S, COPLEY G, et al. Deep-blue oxadiazole-
[5] HUANG T T, LIU D, JIANG J Y, et al. Quinoxaline and pyrido[x,y- containing thermally activated delayed fluorescence emitters for
b]pyrazine-based emitters: Tuning normal fluorescence to thermally organic light-emitting diodes[J]. ACS Applied Materials & Interfaces,
activated delayed fluorescence and emitting color over the entire 2018, 10(39): 33360-33372.
visible-light range[J]. Chemistry A European Journal, 2019, 25(46): [12] ZAREI M. One-pot synthesis of 1,3,4-thiadiazoles using vilsmeier
10926-10937. reagent as a versatile cyclodehydration agent[J]. Tetrahedron, 2017,
[6] RAJAMALLI P, SENTHILKUMAR N, GANDEEPAN P, et al. A new 73(14): 1867-1872.
molecular design based on thermally activated delayed fluorescence [13] MEI Y Q, LIU D, LI J Y, et al. Acridin-9(10H)-one based thermally
for highly efficient organic light emitting diodes[J]. Journal of the activated delayed fluorescence material: Simultaneous optimization
American Chemical Society, 2016, 138(2): 628-634. of RISC and radiation processes to boost luminescence efficiency[J].
[7] CUI L S, NOMURA H, GENG Y, et al. Controlling singlet-triplet Journal of Materials C, 2021, 9(18): 5885-5892.
energy splitting for deep-blue thermally activated delayed fluorescence [14] LI W, LI M K, LI W Q, et al. Spiral donor design strategy for blue
emitters[J]. Angewandte Chemie International Edition, 2017, 56(6): thermally activated delayed fluorescence emitters[J]. ACS Applied
1571-1575. Materials & Interfaces, 2021, 13(4): 5302-5311.
[8] KIM J U, PARK I S, CHAN C Y, et al. Nanosecond-time-scale delayed [15] WU K L, WANG Z A, ZHAN L S, et al. Realizing highly efficient
fluorescence molecule for deep-blue OLEDs with small efficiency solution-processed homojunction-like sky-blue OLEDs by using
rolloff[J]. Nature Communications, 2020, 11(1): 1765. thermally activated delayed fluorescent emitters featuring an
[9] WU T L, LO S H, CHANG Y C, et al. Steric switching for thermally aggregation-induced emission property[J]. Journal of Physical
activated delayed fluorescence by controlling the dihedral angles Chemistry Letters, 2018, 9(7): 1547-1553.