Page 132 - 《精细化工》2022年第2期
P. 132

·336·                             精细化工   FINE CHEMICALS                                 第 39 卷

                 psilostachya auct. non L.)[J]. Journal of Essential Oil Research, 1996,   4-ol[J]. Journal of Northwest A & F University: Natural Science Edition
                 8(5): 559-561.                                    (西北农林科技大学学报:  自然科学版), 2004, 32(8): 130-134.
            [19]  ZHANG L J (张丽佳), XUE Y (薛银), ZHANG C R (张岑容), et al.   [23]  XIAO Y S (肖宇硕), LU J Q (卢金清), MENG J M (孟佳敏), et al.
                 Antibacterial and antiinflammatory effects of eucalyptol[J]. Chinese   Comparative analysis of volatile oil in Artemisia argyi Folium produced
                 Journal of Veterinary Drug (中国兽药杂志), 2013, 47(3): 21-24.   in Qichun and some other areas by GC-MS[J]. China Pharmacist (中
            [20]  SEOL G H, KIM K Y. Eucalyptol and its role in chronic diseases[C]//   国药师), 2018, 21(3): 404-425.
                 GUPTA S C, et al. Drug discovery from mother nature, advances in   [24]  PELKONEN O,  ABASS K, WIESNER J. Thujone and thujone-
                 experimental  medicine and biology 929. Switzerland: Springer   containing  herbal  medicinal and botanical products: Toxicological
                 International Publishing, 2016: 389-398.          assessment[J]. Regulatory Toxicology and Pharmacology, 2013,
            [21]  OU M (欧明), LIN L (林励), LI Y W (李衍文). Handbook of brachylogy   65(1): 100-107.
                 component of Chinese traditional drugs[M]. Beijing: China Medical   [25]  LIU B M (刘布鸣), CHAI L (柴玲), LIN X (林霄), et al. Preparation
                 Science Press (中国医药科技出版社), 2003: 101-103.         of a reconstructed oil of cineole-terpineol type and study on its
            [22]  CHEN G Q (陈根强), FENG J T (冯俊涛), CHEN A L (陈安良), et al.   antibacterial effect[J]. Flavour Fragrance Cosmetics (香料香精化妆
                 Research progress on the ingredient of  plant essential oil—Terpinen-   品), 2016, (5): 25-30.


            (上接第 287 页)                                            dissolution in potassium manganate with rich oxygen defects engaged
            [12]  JIANG H M, ZHANG  Y F, PAN Z  H, et al.  Facile hydrothermal   high-energy-density and durable aqueous zinc-ion  battery[J].
                 synthesis and electrochemical properties of (NH 4) 2V 10O 25•8H 2O   Advanced Functional Materials, 2019, 29(15): 1808375.
                 nanobelts  for high-performance aqueous zinc ion batteries[J].   [20]  CAO J, ZHANG  D D,  YUE  Y  L, et al.  Oxygen defect  enriched
                 Electrochimica Acta, 2020, 332: 135506.           (NH 4) 2V 10O 25•8H 2O nanosheets for  superior aqueous zinc-ion
            [13]  WEI T Y, LI Q, YANG G Z, et al. Highly reversible and long-life   batteries[J]. Nano Energy, 2021, 84: 105876.
                 cycling aqueous zinc-ion battery based on ultrathin (NH 4) 2V 10O 25•8H 2O   [21]  ZHOU J, SHAN  L T, WU Z  X, et  al.  Investigation of  V 2O 5 as a
                 nanobelts[J]. Journal of Materials Chemistry A, 2018, 6(41): 20402- 20410.     low-cost rechargeable aqueous zinc ion battery cathode[J]. Chemical
            [14]  TANG B Y, ZHOU J, FANG G Z, et al. Structural modification of   Communications, 2018, 54(35): 4457-4460.
                 V 2O 5 as high-performance aqueous zinc-ion battery cathode[J].   [22]  JIANG W W, XU X J, LIU  Y  X, et  al.  Facile plasma treated
                 Journal of the Electrochemical Society, 2019, 166(4): A480-A486.   β-MnO 2@C hybrids for durable cycling cathodes in aqueous Zn-ion
                                           +
            [15]  YANG Y Q, TANG Y, FANG G Z, et al. Li  intercalated V 2O 5•nH 2O   batteries[J]. Journal of Alloys Compounds, 2020, 827: 154273.
                 with enlarged layer spacing and fast ion diffusion as an aqueous   [23]  HE P, YAN M Y, ZHANG G B, et al. Layered VS 2 nanosheet-based
                 zinc-ion battery cathode[J]. Energy & Environmental Science, 2018,   aqueous Zn ion battery cathode[J]. Advanced Energy Materials,
                 11(11): 3157-3162.                                2017, 7(11): 1601920.
            [16]  HE P, ZHANG G B,  LIAO X B, et  al.  Sodium ion stabilized   [24]  KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and
                 vanadium oxide nanowire cathode for high-performance zinc-ion   long-life aqueous  rechargeable zinc battery using a metal oxide
                 batteries[J]. Advanced Energy Materials, 2018, 8(10): 1702463.     intercalation cathode[J]. Nature Energy, 2016, 1(10): 1-8.
            [17]  LI S, CHEN M H, FANG G Z, et al.  Synthesis of polycrystalline   [25]  NGO D T,  LE H  T, KIM C, et al.  Mass-scalable synthesis  of 3D
                 K 0.25V 2O 5 nanoparticles  as cathode for aqueous zinc-ion battery[J].   porous germanium-carbon composite particles as an ultra-high rate
                 Journal of Alloys and Compounds, 2019, 801: 82-89.     anode for lithium ion batteries[J]. Energy Environmental Science,
            [18]  HAO  Y, ZHANG S M, TAO P, et al.  Pillaring effect  of K ion   2015, 8(12): 3577-3588.
                 anchoring  for stable V 2O 5-based zinc-ion  battery cathodes[J].   [26]  CHEN J, LI S, KUMAR V, et al. Carbon coated bimetallic sulfide
                 ChemNanoMat, 2020, 6(5): 797-805.                 hollow nanocubes as advanced sodium ion battery anode[J].
            [19]  FANG G Z, ZHU C Y, CHEN M H, et al. Suppressing manganese   Advanced Energy Materials, 2017, 7(19): 1700180.


            (上接第 312 页)                                            between donor and acceptor in organoboron emitters[J]. ACS Applied
                                                                   Materials & Interfaces, 2019, 11(11): 10768-10776.
            [3]   IM Y, KIM M, CHO Y J, et al. Molecular design strategy of organic
                 thermally activated delayed fluorescence emitters[J]. Chemistry of   [10]  TAN Y,  RUI B, LI J Y,  et al. Blue thermally activated delayed
                 Materials, 2017, 29(5): 1946-1963.                fluorescence emitters based on a constructing strategy with diversed
            [4]   CAI X Y, SU S J. Marching toward highly efficient, pure-blue, and   donors and oxadiazole acceptor and their efficient electroluminescent
                 stable thermally activated delayed fluorescent organic light-emitting   devices[J]. Optical Materials, 2019, 94: 103-112.
                 diodes[J]. Advanced Functional Materials, 2018, 28(43): 1802558.   [11]  WONG M Y, KROTKUS S, COPLEY G, et al. Deep-blue oxadiazole-
            [5]   HUANG T T, LIU D, JIANG J Y, et al. Quinoxaline and pyrido[x,y-   containing  thermally activated delayed fluorescence emitters for
                 b]pyrazine-based emitters: Tuning normal fluorescence to thermally   organic light-emitting diodes[J]. ACS Applied Materials & Interfaces,
                 activated delayed fluorescence and emitting color over the entire   2018, 10(39): 33360-33372.
                 visible-light range[J]. Chemistry A European Journal, 2019, 25(46):   [12]  ZAREI M. One-pot synthesis of 1,3,4-thiadiazoles using vilsmeier
                 10926-10937.                                      reagent as a versatile cyclodehydration agent[J]. Tetrahedron, 2017,
            [6]   RAJAMALLI P, SENTHILKUMAR N, GANDEEPAN P, et al. A new   73(14): 1867-1872.
                 molecular design based on thermally activated delayed fluorescence   [13]  MEI Y Q, LIU D, LI J Y, et al. Acridin-9(10H)-one based thermally
                 for  highly efficient organic light emitting  diodes[J]. Journal of the   activated delayed fluorescence  material: Simultaneous optimization
                 American Chemical Society, 2016, 138(2): 628-634.   of RISC and radiation processes to boost luminescence efficiency[J].
            [7]   CUI L S, NOMURA H, GENG  Y,  et al. Controlling singlet-triplet   Journal of Materials C, 2021, 9(18): 5885-5892.
                 energy splitting for deep-blue thermally activated delayed fluorescence   [14]  LI W, LI M K, LI W Q, et al. Spiral donor design strategy for blue
                 emitters[J]. Angewandte Chemie International Edition, 2017, 56(6):   thermally activated delayed fluorescence  emitters[J]. ACS Applied
                 1571-1575.                                        Materials & Interfaces, 2021, 13(4): 5302-5311.
            [8]   KIM J U, PARK I S, CHAN C Y, et al. Nanosecond-time-scale delayed   [15]  WU K L, WANG Z A, ZHAN L S, et al. Realizing highly efficient
                 fluorescence  molecule for deep-blue OLEDs  with small efficiency   solution-processed  homojunction-like  sky-blue OLEDs by using
                 rolloff[J]. Nature Communications, 2020, 11(1): 1765.   thermally  activated delayed fluorescent emitters featuring an
            [9]   WU T L, LO S H, CHANG Y C, et al. Steric switching for thermally   aggregation-induced emission  property[J]. Journal  of Physical
                 activated delayed fluorescence by  controlling  the dihedral angles   Chemistry Letters, 2018, 9(7): 1547-1553.
   127   128   129   130   131   132   133   134   135   136   137