Page 31 - 《精细化工》2022年第3期
P. 31
第 3 期 周姚红,等: 木质素催化氧化制备芳香醛研究进展 ·453·
catalyst system for chemoselective aerobic oxidation of primary for lignin valorization by heterogeneous photocatalysis[J]. Green
alcohols[J]. Journal of the American Chemical Society, 2011, 133(42): Chemistry, 2016, 18: 549-607.
16901-16910. [62] COLMENARES J C, VARMA R S, NAIR V. Selective photocatalysis
[47] LI B C, HUY N N, LIN J Y, et al. Nanopetal-like copper hydroxide of lignin-inspired chemicals by integrating hybrid nanocatalysis in
nitrate as a highly selective heterogeneous catalyst for valorization of microfluidic reactors[J]. Chemical Society Reviews, 2017, 46: 6675-
vanillic alcohol via oxidation[J]. Journal of Environmental Chemical 6686.
Engineering, 2021, 9(5): 106092. [63] KUMARAVEL S, THIRUVENGETAM P, KARTHICK K, et al.
[48] CEDENO D, BOZELL J J. Catalytic oxidation of para-substituted Green and sustainable route for oxidative depolymerisation of lignin:
phenols with cobalt-schiff base complexes/O 2-selective conversion of New platform for fine chemicals and fuels[J]. Biotechnology
syringyl and guaiacyl lignin models to benzoquinones[J]. Tetrahedron Progress, 2020, 37(2): e3111.
Letters, 2012, 53(19): 2380-2383. [64] AL-HUNAITI A, GHAZZY A, SWEIDAN N, et al. Nano-magnetic
[49] COOPER C J, ALAM S, NZIKO V D P N, et al. Co(salen)-catalyzed NiFe 2O 4 and its photocatalytic oxidation of vanillyl alcohol—
oxidation of lignin models to form benzoquinones and benzaldehydes: Synthesis, characterization, and application in the valorization of
A computational and experimental study[J]. ACS Sustainable Chemistry lignin[J]. Nanomaterials, 2021, 11(4): 1010.
& Engineering, 2020, 8(18): 7225-7234. [65] LIU H F, LI H J, LUO N C, et al. Visible-light-induced oxidative
[50] RAJAGOPALAN B, CAI H, BUSCH D H, et al. The catalytic lignin C—C bond cleavage to aldehydes using vanadium catalysts[J].
efficacy of Co(salen) (al) in O 2 oxidation reactions in CO 2-expanded ACS Catalysis, 2020, 10(1): 632-643.
solvent media: Axial ligand dependence and substrate selectivity[J]. [66] WANG Y L, HE J H, ZHANG Y T. CeCl 3-promoted simultaneous
Catalysis Letters, 2008, 123(1/2): 46-50. photocatalytic cleavage and amination of C α—C β bond in lignin
[51] KEY R E, ELDER T, BOZELL J J. Steric effects of bulky tethered model compounds and native lignin[J]. CCS Chemistry, 2020, 2(3):
arylpiperazines on the reactivity of Co-Schiff base oxidation catalysts— 107-117.
A synthetic and computational study[J]. Tetrahedron, 2019, 75(23): [67] YE K, LIU Y, WU S B, et al. A review for lignin valorization:
3118-3127. Challenges and perspectives in catalytic hydrogenolysis[J]. Industrial
[52] ZULETA E C, GOENAGA G A, ZAWODZINSKI T A, et al. Crops and Products, 2021, 172: 114008.
Deactivation of Co-Schiff base catalysts in the oxidation of [68] ZHANG Z R, SONG J L, HAN B X. Catalytic transformation of
para-substituted lignin models for the production of benzoquinones[J]. lignocellulose into chemicals and fuel products in ionic liquids[J].
Catalysis Science & Technology, 2020, 10(2): 403-413. Chemical Reviews, 2017, 117(10): 6834-6880.
[53] DU X, ZHANG H C, SULLIVAN K P, et al. Electrochemical lignin [69] DE GREGORIO G F, PRADO R, VRIAMONT C, et al. Oxidative
conversion[J]. ChemSusChem, 2020, 13(17): 4318-4343. depolymerization of lignin using a novel polyoxometalate-protic
[54] GAREDEW M, LIN F, SONG B, et al. Greener routes to biomass ionic liquid system[J]. ACS Sustainable Chemistry, 2016, 4(11):
waste valorization: Lignin transformation through electrocatalysis for 6031-6036.
renewable chemicals and fuels production[J]. ChemSusChem, 2020, [70] XU W B (徐文彪). The oxidative depolymerization of lignin over
13(17): 4214-4237. polyoxometalate catalysis[D]. Harbin: Northeast Forestry University
[55] ZIRBES M, SCHMITT D, BEISER N, et al. Anodic degradation of (东北林业大学), 2019.
lignin at active transition metal-based alloys and performance- [71] GENISELLI DA SILVA V. Laccases and ionic liquids as an alternative
enhanced anodes[J]. ChemElectroChem, 2019, 6(1): 155-161. method for lignin depolymerization: A review[J]. Bioresource
[56] LI R X (李汝雄), WANG J J (王建基). Reseach and application on Technology Reports, 2021, 16: 100824.
green solvent—The iionic liquid[J]. Chemical Industry and [72] ZAKARIA S M, IDRIS A, CHANDRASEKARAM K, et al.
Engineering Progress (化工进展), 2002, 21(1): 43-48. Efficiency of bronsted acidic ionic liquids in the dissolution and
[57] DIER T K F, RAUBER D, DURNEATA D, et al. Sustainable depolymerization of lignin from rice husk into high value-added
electrochemical depolymerization of lignin in reusable ionic liquids[J]. products[J]. Industrial Crops and Products, 2020, 157: 112885.
Scientific Reports, 2017, 7(1): 5041. [73] TOLEDANO A, SERRANO L, LABIDI J. Organosolv lignin
[58] RAFIEE M, ALHERECH M, KARLEN S D, et al. Electrochemical depolymerization with different base catalysts[J]. Journal of Chemical
aminoxyl-mediated oxidation of primary alcohols in lignin to Technology & Biotechnology, 2012, 87(11): 1593-1599.
carboxylic acids: Polymer modification and depolymerization[J]. [74] DEEPA A K, DHEPE P L. Lignin depolymerization into aromatic
Journal of the American Chemical Society, 2019, 141(38): 15266- monomers over solid acid catalysts[J]. ACS Catalysis, 2015, 5(1):
15276. 365-379.
[59] YAN K L, ZHANG Y, TU M B, et al. Electrocatalytic valorization of [75] SINGH S K, DHEPE P L. Ionic liquids catalyzed lignin liquefaction:
organosolv lignin utilizing a nickel-based electrocatalyst[J]. Energy & Mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-
Fuels, 2020, 34(10): 12703-12709. HSQC/NOSEY NMR[J]. Green Chemistry, 2016, 18(14): 4098-4108.
[60] YOU B, LIU X, LIU X, et al. Efficient H 2 evolution coupled with [76] LI W B, WANG Y L, LI D C, et al. 1-Ethyl-3-methylimidazolium
oxidative refining of alcohols via a hierarchically porous nickel acetate ionic liquid as simple and efficient catalytic system for the
bifunctional electrocatalyst[J]. ACS Catalysis, 2017, 7(7): 4564-4570. oxidative depolymerization of alkali lignin[J]. International Journal of
[61] LI S H, LIU S Q, COLMENARES J C, et al. A sustainable approach Biological Macromolecules, 2021, 183: 285-294.