Page 31 - 《精细化工》2022年第3期
P. 31

第 3 期                        周姚红,等:  木质素催化氧化制备芳香醛研究进展                                    ·453·


                catalyst system for chemoselective  aerobic oxidation of primary   for lignin  valorization by  heterogeneous photocatalysis[J].  Green
                alcohols[J]. Journal of the American Chemical Society, 2011, 133(42):   Chemistry, 2016, 18: 549-607.
                16901-16910.                                   [62]  COLMENARES J C, VARMA R S, NAIR V. Selective photocatalysis
            [47]  LI B C, HUY N N, LIN J Y, et al. Nanopetal-like copper hydroxide   of lignin-inspired chemicals by integrating  hybrid  nanocatalysis in
                nitrate as a highly selective heterogeneous catalyst for valorization of   microfluidic reactors[J]. Chemical Society Reviews, 2017, 46: 6675-
                vanillic alcohol via oxidation[J]. Journal of Environmental Chemical   6686.
                Engineering, 2021, 9(5): 106092.               [63]  KUMARAVEL S,  THIRUVENGETAM P, KARTHICK K,  et al.
            [48]  CEDENO  D,  BOZELL J J. Catalytic oxidation  of para-substituted   Green and sustainable route for oxidative depolymerisation of lignin:
                phenols with cobalt-schiff base complexes/O 2-selective conversion of   New platform for fine chemicals and fuels[J]. Biotechnology
                syringyl and  guaiacyl lignin models  to benzoquinones[J].  Tetrahedron   Progress, 2020, 37(2): e3111.
                Letters, 2012, 53(19): 2380-2383.              [64]  AL-HUNAITI A, GHAZZY A, SWEIDAN N, et al. Nano-magnetic
            [49]  COOPER C J, ALAM S, NZIKO V D P N, et al. Co(salen)-catalyzed   NiFe 2O 4 and its photocatalytic oxidation of vanillyl alcohol—
                oxidation of lignin models to form benzoquinones and benzaldehydes:   Synthesis, characterization, and application in the valorization  of
                A computational and experimental study[J]. ACS Sustainable Chemistry   lignin[J]. Nanomaterials, 2021, 11(4): 1010.
                & Engineering, 2020, 8(18): 7225-7234.         [65]  LIU H F, LI H J, LUO N C,  et al. Visible-light-induced oxidative
            [50]  RAJAGOPALAN  B, CAI H,  BUSCH D  H,  et al. The catalytic   lignin C—C bond cleavage to aldehydes using vanadium catalysts[J].
                efficacy of Co(salen) (al) in O 2 oxidation reactions in CO 2-expanded   ACS Catalysis, 2020, 10(1): 632-643.
                solvent media: Axial ligand dependence and substrate selectivity[J].   [66]  WANG  Y L, HE J H, ZHANG Y T.  CeCl 3-promoted simultaneous
                Catalysis Letters, 2008, 123(1/2): 46-50.          photocatalytic cleavage and amination of C α—C β bond in  lignin
            [51]  KEY R E, ELDER T, BOZELL J J. Steric effects of bulky tethered   model compounds and native lignin[J]. CCS Chemistry, 2020, 2(3):
                arylpiperazines on the reactivity of Co-Schiff base oxidation catalysts—   107-117.
                A synthetic and  computational study[J].  Tetrahedron, 2019, 75(23):   [67]  YE K, LIU  Y, WU S B,  et al.  A review for  lignin valorization:
                3118-3127.                                         Challenges and perspectives in catalytic hydrogenolysis[J]. Industrial
            [52]  ZULETA  E  C,  GOENAGA G A, ZAWODZINSKI T  A,  et al.   Crops and Products, 2021, 172: 114008.
                Deactivation of Co-Schiff base catalysts in the oxidation of   [68]  ZHANG  Z R, SONG J L, HAN B  X. Catalytic transformation of
                para-substituted lignin models for the production of benzoquinones[J].   lignocellulose into  chemicals and fuel products  in ionic liquids[J].
                Catalysis Science & Technology, 2020, 10(2): 403-413.   Chemical Reviews, 2017, 117(10): 6834-6880.
            [53]  DU X, ZHANG H C, SULLIVAN K P, et al. Electrochemical lignin   [69]  DE GREGORIO G F, PRADO R, VRIAMONT C, et al. Oxidative
                conversion[J]. ChemSusChem, 2020, 13(17): 4318-4343.   depolymerization of lignin using a  novel polyoxometalate-protic
            [54]  GAREDEW M, LIN F, SONG B,  et al. Greener routes to biomass   ionic liquid  system[J].  ACS Sustainable Chemistry, 2016, 4(11):
                waste valorization: Lignin transformation through electrocatalysis for   6031-6036.
                renewable chemicals and fuels production[J]. ChemSusChem, 2020,   [70]  XU W B (徐文彪). The oxidative depolymerization of lignin over
                13(17): 4214-4237.                                 polyoxometalate catalysis[D]. Harbin: Northeast Forestry University
            [55]  ZIRBES M, SCHMITT D, BEISER N, et al. Anodic degradation of   (东北林业大学), 2019.
                lignin at active transition metal-based alloys and performance-   [71]  GENISELLI DA SILVA V. Laccases and ionic liquids as an alternative
                enhanced anodes[J]. ChemElectroChem, 2019, 6(1): 155-161.   method for lignin depolymerization: A review[J]. Bioresource
            [56]  LI R X (李汝雄), WANG J J (王建基). Reseach and application on   Technology Reports, 2021, 16: 100824.
                green solvent—The iionic liquid[J]. Chemical Industry and   [72]  ZAKARIA S M, IDRIS A,  CHANDRASEKARAM K,  et al.
                Engineering Progress (化工进展), 2002, 21(1): 43-48.   Efficiency of bronsted acidic ionic liquids in the dissolution and
            [57]  DIER T K F, RAUBER D, DURNEATA D,  et al. Sustainable   depolymerization of lignin from rice husk into  high  value-added
                electrochemical depolymerization of lignin in reusable ionic liquids[J].   products[J]. Industrial Crops and Products, 2020, 157: 112885.
                Scientific Reports, 2017, 7(1): 5041.          [73]  TOLEDANO A,  SERRANO L,  LABIDI J.  Organosolv lignin
            [58]  RAFIEE M, ALHERECH M, KARLEN S D, et al. Electrochemical   depolymerization with different base catalysts[J]. Journal of Chemical
                aminoxyl-mediated oxidation of primary  alcohols in lignin to   Technology & Biotechnology, 2012, 87(11): 1593-1599.
                carboxylic acids: Polymer  modification and depolymerization[J].   [74]  DEEPA A K,  DHEPE P L. Lignin  depolymerization into aromatic
                Journal  of the American Chemical Society, 2019,  141(38):  15266-   monomers over solid acid catalysts[J]. ACS Catalysis, 2015, 5(1):
                15276.                                             365-379.
            [59]  YAN K L, ZHANG Y, TU M B, et al. Electrocatalytic valorization of   [75]  SINGH S K, DHEPE P L. Ionic liquids catalyzed lignin liquefaction:
                organosolv lignin utilizing a nickel-based electrocatalyst[J]. Energy &   Mechanistic studies using TPO-MS,  FT-IR, RAMAN  and 1D, 2D-
                Fuels, 2020, 34(10): 12703-12709.                  HSQC/NOSEY NMR[J]. Green Chemistry, 2016, 18(14): 4098-4108.
            [60]  YOU B,  LIU X, LIU X, et al. Efficient H 2 evolution coupled with   [76]  LI W B, WANG Y L, LI D C,  et al. 1-Ethyl-3-methylimidazolium
                oxidative refining  of alcohols  via a hierarchically porous nickel   acetate ionic liquid as simple and efficient catalytic system for the
                bifunctional electrocatalyst[J]. ACS Catalysis, 2017, 7(7): 4564-4570.   oxidative depolymerization of alkali lignin[J]. International Journal of
            [61]  LI S H, LIU S Q, COLMENARES J C, et al. A sustainable approach   Biological Macromolecules, 2021, 183: 285-294.
   26   27   28   29   30   31   32   33   34   35   36