Page 30 - 《精细化工》2022年第3期
P. 30

·452·                             精细化工   FINE CHEMICALS                                 第 39 卷

            [12]  ZHANG S D ( 张淑迪 ). Study  on extraction of  lignin and   338-342.
                hydrogenation by deep eutectic solvents[D]. Guangzhou: South China   [30]  WEINSTOCK I, ATALLA R, REINER R, et al. A new environmentally
                University of Technology (华南理工大学), 2020.           benign  technology and approach to  bleaching  kraft pulp.
            [13]  WONG S S, SHU R Y, ZHANG J G, et al. Downstream processing of   Polyoxometalates  for  selective  delignification  and  waste
                lignin  derived  feedstock into end  products[J]. Chemical Society   mineralization[J]. New Journal of Chemistry, 1996, 20(2): 269-275.
                Reviews, 2020, 49(15): 5510-5560.              [31]  LAN H R (兰海瑞). Appling two heteropoly acid in preparation of
            [14] CHEN B Y (陈冰玉), QIU M W (邸明伟). Progress on reaserch of   aromatic compounds from lignin via catalytic oxidation[D]. Changji:
                depolymerization of lignin[J]. Polymer Materials Science & Engineering   Changji College (昌吉学院), 2018.
                (高分子材料科学与工程), 2019, 35(6): 157-164.            [32]  LAN  H R (兰海瑞), HONG  L (洪亮), SONG W  L (宋武林),et al.
            [15]  SHU R Y (舒日洋), XU Y (徐莹), ZHANG Q (张琦), et al. Progress   Preparation of aromatic aldehydes by catalytic oxidation of lignin
                in catalytic depolymerization of lignin[J]. Journal of Chemical   with silicomolybdic acid[C]//The Eleventh National Conference on
                Industry and Engineering (化工学报), 2016, 67(11): 4523-4532.   Environmental Catalysis and Materials (第十一届全国环境催化与
            [16]  AIJAZ A, ZHU  Q L, TSUMORI  N,  et al. Surfactant-free Pd   环境材料学术会议), 2018: 1.
                nanoparticles immobilized to a metal-organic framework  with size-   [33]  XU W B, LI X Y, SHI J Y. Oxidative depolymerization of cellulolytic
                and location-dependent catalytic selectivity[J]. Chemical Communications,   enzyme lignin over silicotungvanadium polyoxometalates[J]. Polymers
                2015, 51(13): 2577-2580.                           (Basel), 2019, 11(3): 564.
            [17]  YUAN Z, EDEN M  R. Recent  advances in optimal design of   [34]  ZHANG H F (张海峰), YANG J Y (杨军艳), WU J X (吴建新), et al.
                thermochemical conversion of biomass to chemicals  and liquid   Research progress of lignin oxidative degradation[J]. Chinese Journal
                fuels[J]. Current Opinion in Chemical Engineering, 2015, 10: 70-76.   of Organic Chemistry (有机化学), 2016, 36(6): 1266-1286.
            [18]  LIU S J (刘思洁), LU Y L (陆燕玲), HUANG J R (黄家荣), et al.   [35]  JEON W, CHOI I H, PARK J  Y,  et al. Alkaline wet oxidation  of
                Selective conversion of biomass catalyzed by ionic liquids[J]. Scientia   lignin over Cu-Mn mixed oxide catalysts for production of vanillin[J].
                Sinica (Chimica) (中国科学:  化学), 2021, 51(10): 1382-1390.   Catalysis Today, 2020, 352: 95-103.
            [19]  MA C H (马春慧), SUN J D (孙晋德), LI W (李伟),  et al.   [36]  DENG H B, LIN L, LIU S J. Catalysis of Cu-doped Co-based
                Application  progress of ionic liquids in the field  of lignin   perovskite-type oxide in wet oxidation of lignin to produce aromatic
                depolymerization[J].  Journal of Forestry  Engineering (林业工程学  aldehydes[J]. Energy & Fuels, 2010, 24(9): 4797-4802.
                报), 2021, 6(5): 14-26.                         [37]  DENG H B (邓海波), GAO L (高磊), LONG Z (龙柱), et al. Studies
            [20]  DAS L, KOLAR P, SHARMA-SHIVAPPA R. Heterogeneous   on catalysis of Cu-doped Mn-based perovskite-type oxide in wet
                catalytic oxidation of lignin into value-added chemicals[J]. Biofuels,   oxidation of lignin to produce aromatic aldehydes[J]. China Pulp and
                2012, 3(2): 155-166.                               Paper Industry, 2012, 33(18):26-30.
            [21]  TARABANKO V E, TARABANKO N. Catalytic oxidation of lignins   [38]  PENG H G, LIU Y, GUO Y,  et al. Treating  copper(Ⅱ) oxide
                into the aromatic aldehydes: General process trends and development   nanoflowers with hydrogen peroxide: A novel and facile strategy to
                prospects[J]. International Journal of Molecular Sciences, 2017,   prepare high-performance copper(Ⅱ) oxide nanosheets with exposed
                18(11): 2421.                                      (110) facets[J]. ChemCatChem, 2016, 8(24): 3714-3719.
            [22]  SUN K  K,  CHEN S J, ZHANG J  W,  et al. Cobalt nanoparticles   [39]  YANG Q L, LIU G L, LIU Y. Perovskite-type oxides as the catalyst
                embedded in N-doped porous carbon derived from bimetallic zeolitic   precursors for preparing supported metallic nanocatalysts: A review[J].
                imidazolate frameworks for one-pot selective oxidative depolymerization   Industrial & Engineering Chemistry Research, 2018, 57(1): 1-17.
                of lignin[J]. ChemCatChem, 2019, 11(4): 1264-1271.   [40]  MUHUMUZA E, WU P P, NAN T, et al. Perovskite-type LaCoO 3 as
            [23]  ZHAO  L, SHI S, ZHU G  Z,  et al.  Au-Pd alloy cooperates with   an efficient and green catalyst for  sustainable partial oxidation of
                covalent triazine frameworks for the catalytic oxidative cleavage of   cyclohexane[J]. Industrial & Engineering Chemistry Research, 2020,
                β—O—4 linkages[J]. Green Chemistry, 2019, 21(24): 6707-6716.   59(49): 21322-21332.
            [24]  LI S Y, HAO Z K, WANG K X, et al. Visible light-enabled selective   [41]  ANSALONI S, RUSSO N, PIRONE R. Wet air oxidation  of
                depolymerization of oxidized lignin by  an organic photocatalyst[J].   industrial lignin case study: Influence of the dissolution pretreatment
                Chemical Communications, 2020, 56(76): 11243-11246.   and perovskite-type oxides[J]. Waste and Biomass Valorization, 2017,
            [25]  DENG W P, ZHANG H X, WU X J, et al. Oxidative conversion of   9(11): 2165-2179.
                lignin and lignin model compounds catalyzed by CeO 2-supported Pd   [42]  SAHA S, HAMID S B A. CuZrO 3 nanoparticles catalyst in aerobic
                nanoparticles[J]. Green Chemistry, 2015, 17(11): 5009-5018.   oxidation of vanillyl alcohol[J]. RSC Advances, 2017, 7(7):
            [26]  LIN F, LIU C,  WANG  X,  et al. Catalytic oxidation of  biorefinery   9914-9925.
                corncob lignin via zirconium(Ⅳ) chloride and sodium hydroxide in   [43]  LI Y X, ZHU J P, ZHANG Z J, et al. Preparation of syringaldehyde
                acetonitrile/water: A functionality study[J]. Science of the Total   from lignin by catalytic oxidation of perovskite-type oxides[J]. ACS
                Environment, 2019, 675: 203-212.                   Omega, 2020, 5(5): 2107-2113.
            [27]  WALCH F, ABDELAZIZ O Y,  MEIER S,  et al. Oxidative   [44]  HE J Y (何金义), ZHU K (朱凯). Synthesis of vanillin by catalytic
                depolymerization of kraft lignin to high-value aromatics using a   hydrogen peroxide  oxidation of iso-eugenol  catalyzed  by  methyl-
                homogeneous vanadium-copper catalyst[J]. Catalysis Science &   trioxide[J]. Applied Chemical Industry (应用化工), 2019, 48(3):
                Technology, 2021, 11: 1843-1853.                   550-553.
            [28]  CHEN Y G (陈彦广), AN H Y (安宏宇), HAN H J (韩洪晶), et al.   [45]  ZHENG M W, LIN K Y A, LIN C H. Tempo-functionalized silica as
                Research progress on catalytic oxidation of lignin[J]. New Chemical   an efficient and recyclable oxidation  catalyst for conversion of a
                Materials (化工新型材料), 2018, 46(11): 245-248.         lignin model compound to value-added products[J]. Waste and
            [29]  EVTUGUIN D V, NETO C P. New polyoxometalate pro-moted   Biomass Valorization, 2020, 11(12): 6917-6928.
                method  of oxygen delignification[J]. Holzforschung, 1997, 51(4):   [46]  HOOVER J M, STAHL S S. Highly practical copper(Ⅰ)/tempo
   25   26   27   28   29   30   31   32   33   34   35