Page 30 - 《精细化工》2022年第3期
P. 30
·452· 精细化工 FINE CHEMICALS 第 39 卷
[12] ZHANG S D ( 张淑迪 ). Study on extraction of lignin and 338-342.
hydrogenation by deep eutectic solvents[D]. Guangzhou: South China [30] WEINSTOCK I, ATALLA R, REINER R, et al. A new environmentally
University of Technology (华南理工大学), 2020. benign technology and approach to bleaching kraft pulp.
[13] WONG S S, SHU R Y, ZHANG J G, et al. Downstream processing of Polyoxometalates for selective delignification and waste
lignin derived feedstock into end products[J]. Chemical Society mineralization[J]. New Journal of Chemistry, 1996, 20(2): 269-275.
Reviews, 2020, 49(15): 5510-5560. [31] LAN H R (兰海瑞). Appling two heteropoly acid in preparation of
[14] CHEN B Y (陈冰玉), QIU M W (邸明伟). Progress on reaserch of aromatic compounds from lignin via catalytic oxidation[D]. Changji:
depolymerization of lignin[J]. Polymer Materials Science & Engineering Changji College (昌吉学院), 2018.
(高分子材料科学与工程), 2019, 35(6): 157-164. [32] LAN H R (兰海瑞), HONG L (洪亮), SONG W L (宋武林),et al.
[15] SHU R Y (舒日洋), XU Y (徐莹), ZHANG Q (张琦), et al. Progress Preparation of aromatic aldehydes by catalytic oxidation of lignin
in catalytic depolymerization of lignin[J]. Journal of Chemical with silicomolybdic acid[C]//The Eleventh National Conference on
Industry and Engineering (化工学报), 2016, 67(11): 4523-4532. Environmental Catalysis and Materials (第十一届全国环境催化与
[16] AIJAZ A, ZHU Q L, TSUMORI N, et al. Surfactant-free Pd 环境材料学术会议), 2018: 1.
nanoparticles immobilized to a metal-organic framework with size- [33] XU W B, LI X Y, SHI J Y. Oxidative depolymerization of cellulolytic
and location-dependent catalytic selectivity[J]. Chemical Communications, enzyme lignin over silicotungvanadium polyoxometalates[J]. Polymers
2015, 51(13): 2577-2580. (Basel), 2019, 11(3): 564.
[17] YUAN Z, EDEN M R. Recent advances in optimal design of [34] ZHANG H F (张海峰), YANG J Y (杨军艳), WU J X (吴建新), et al.
thermochemical conversion of biomass to chemicals and liquid Research progress of lignin oxidative degradation[J]. Chinese Journal
fuels[J]. Current Opinion in Chemical Engineering, 2015, 10: 70-76. of Organic Chemistry (有机化学), 2016, 36(6): 1266-1286.
[18] LIU S J (刘思洁), LU Y L (陆燕玲), HUANG J R (黄家荣), et al. [35] JEON W, CHOI I H, PARK J Y, et al. Alkaline wet oxidation of
Selective conversion of biomass catalyzed by ionic liquids[J]. Scientia lignin over Cu-Mn mixed oxide catalysts for production of vanillin[J].
Sinica (Chimica) (中国科学: 化学), 2021, 51(10): 1382-1390. Catalysis Today, 2020, 352: 95-103.
[19] MA C H (马春慧), SUN J D (孙晋德), LI W (李伟), et al. [36] DENG H B, LIN L, LIU S J. Catalysis of Cu-doped Co-based
Application progress of ionic liquids in the field of lignin perovskite-type oxide in wet oxidation of lignin to produce aromatic
depolymerization[J]. Journal of Forestry Engineering (林业工程学 aldehydes[J]. Energy & Fuels, 2010, 24(9): 4797-4802.
报), 2021, 6(5): 14-26. [37] DENG H B (邓海波), GAO L (高磊), LONG Z (龙柱), et al. Studies
[20] DAS L, KOLAR P, SHARMA-SHIVAPPA R. Heterogeneous on catalysis of Cu-doped Mn-based perovskite-type oxide in wet
catalytic oxidation of lignin into value-added chemicals[J]. Biofuels, oxidation of lignin to produce aromatic aldehydes[J]. China Pulp and
2012, 3(2): 155-166. Paper Industry, 2012, 33(18):26-30.
[21] TARABANKO V E, TARABANKO N. Catalytic oxidation of lignins [38] PENG H G, LIU Y, GUO Y, et al. Treating copper(Ⅱ) oxide
into the aromatic aldehydes: General process trends and development nanoflowers with hydrogen peroxide: A novel and facile strategy to
prospects[J]. International Journal of Molecular Sciences, 2017, prepare high-performance copper(Ⅱ) oxide nanosheets with exposed
18(11): 2421. (110) facets[J]. ChemCatChem, 2016, 8(24): 3714-3719.
[22] SUN K K, CHEN S J, ZHANG J W, et al. Cobalt nanoparticles [39] YANG Q L, LIU G L, LIU Y. Perovskite-type oxides as the catalyst
embedded in N-doped porous carbon derived from bimetallic zeolitic precursors for preparing supported metallic nanocatalysts: A review[J].
imidazolate frameworks for one-pot selective oxidative depolymerization Industrial & Engineering Chemistry Research, 2018, 57(1): 1-17.
of lignin[J]. ChemCatChem, 2019, 11(4): 1264-1271. [40] MUHUMUZA E, WU P P, NAN T, et al. Perovskite-type LaCoO 3 as
[23] ZHAO L, SHI S, ZHU G Z, et al. Au-Pd alloy cooperates with an efficient and green catalyst for sustainable partial oxidation of
covalent triazine frameworks for the catalytic oxidative cleavage of cyclohexane[J]. Industrial & Engineering Chemistry Research, 2020,
β—O—4 linkages[J]. Green Chemistry, 2019, 21(24): 6707-6716. 59(49): 21322-21332.
[24] LI S Y, HAO Z K, WANG K X, et al. Visible light-enabled selective [41] ANSALONI S, RUSSO N, PIRONE R. Wet air oxidation of
depolymerization of oxidized lignin by an organic photocatalyst[J]. industrial lignin case study: Influence of the dissolution pretreatment
Chemical Communications, 2020, 56(76): 11243-11246. and perovskite-type oxides[J]. Waste and Biomass Valorization, 2017,
[25] DENG W P, ZHANG H X, WU X J, et al. Oxidative conversion of 9(11): 2165-2179.
lignin and lignin model compounds catalyzed by CeO 2-supported Pd [42] SAHA S, HAMID S B A. CuZrO 3 nanoparticles catalyst in aerobic
nanoparticles[J]. Green Chemistry, 2015, 17(11): 5009-5018. oxidation of vanillyl alcohol[J]. RSC Advances, 2017, 7(7):
[26] LIN F, LIU C, WANG X, et al. Catalytic oxidation of biorefinery 9914-9925.
corncob lignin via zirconium(Ⅳ) chloride and sodium hydroxide in [43] LI Y X, ZHU J P, ZHANG Z J, et al. Preparation of syringaldehyde
acetonitrile/water: A functionality study[J]. Science of the Total from lignin by catalytic oxidation of perovskite-type oxides[J]. ACS
Environment, 2019, 675: 203-212. Omega, 2020, 5(5): 2107-2113.
[27] WALCH F, ABDELAZIZ O Y, MEIER S, et al. Oxidative [44] HE J Y (何金义), ZHU K (朱凯). Synthesis of vanillin by catalytic
depolymerization of kraft lignin to high-value aromatics using a hydrogen peroxide oxidation of iso-eugenol catalyzed by methyl-
homogeneous vanadium-copper catalyst[J]. Catalysis Science & trioxide[J]. Applied Chemical Industry (应用化工), 2019, 48(3):
Technology, 2021, 11: 1843-1853. 550-553.
[28] CHEN Y G (陈彦广), AN H Y (安宏宇), HAN H J (韩洪晶), et al. [45] ZHENG M W, LIN K Y A, LIN C H. Tempo-functionalized silica as
Research progress on catalytic oxidation of lignin[J]. New Chemical an efficient and recyclable oxidation catalyst for conversion of a
Materials (化工新型材料), 2018, 46(11): 245-248. lignin model compound to value-added products[J]. Waste and
[29] EVTUGUIN D V, NETO C P. New polyoxometalate pro-moted Biomass Valorization, 2020, 11(12): 6917-6928.
method of oxygen delignification[J]. Holzforschung, 1997, 51(4): [46] HOOVER J M, STAHL S S. Highly practical copper(Ⅰ)/tempo