Page 130 - 《精细化工》2022年第6期
P. 130
·1196· 精细化工 FINE CHEMICALS 第 39 卷
CH 4 选择性达到 84.37%,CO 选择性仅为 15.63%。 Petrochemical Technology (石油化工), 2012, 41(3): 254-259.
[17] WANG Y H (王昱涵), BAI S Y (白思雨), CUI L J (崔丽杰), et al.
说明助剂 Ni 与 Mo 相互作用形成了 Ni 3 Mo 3 N 物种, Catalytic activity and sulfur-resistance stability of Ni-Mo-based catalysts
使纳米粒子分散更加均匀,更有助于 CH 4 的生成。 for syngas methanation[J]. CIESC Journal (化工学报), 2018, 69(5):
2063-2072.
稳定性实验表明,400 ℃的反应温度下,这类催化 [18] ZHANG A J, ZHU A M, CHEN B B, et al. In-situ synthesis of nickel
modified molybdenum carbide catalyst for dry reforming of methane
剂在 RWGS 反应中均具有良好的 CO 2 转化率和稳定 [J]. Catalysis Communications, 2011, 12(9): 803-807.
性。其中,MCAS 催化剂在低温下更易于向 CO 转 [19] YANG L, PASTOR-PEREZ L, GU S, et al. Highly efficient Ni/CeO 2-
Al 2O 3 catalysts for CO 2 upgrading via reverse water-gas shift: Effect
化;而 MNCAS 催化剂更易于向 CH 4 转化。这一结 of selected transition metal promoters[J]. Applied Catalysis B:
果有望为新型 CO 2 加氢处理催化剂的制备提供一定 Environmental, 2018, 232(3): 464-471.
[20] CHEN X Y, DING W, YAO Z W, et al. Novel synthesis of a NiMoP
理论依据。 phosphide catalyst via carbothermal reduction for dry reforming of
methane[J]. Catalysis Science & Technology, 2021, 11(20): 6654-6658.
参考文献: [21] MARC D P, YANG X F, BOSCOBOINIK J A, et al. Molybdenum
carbide as alternative catalysts to precious metals for highly selective
[1] ZHOU Y W (周郁文), SU T M (苏通明), JIANG Y X (蒋月秀), et al. reduction of CO 2 to CO[J]. Angewandte Chemie International Edition,
Effect of Co loading amount on catalytic performance of Co/TiO 2 2014, 53(26): 6705-6711.
catalysts for CO 2 methanation[J]. Fine Chemicals (精细化工), 2018, [22] GAO J J, WU Y, JIA C M, et al. Controllable synthesis of α-MoC 1-x
35(1): 72-80. and β-Mo 2C nanowires for highly selective CO 2 reduction to CO[J].
[2] LI J J (李静静), RONG Z M (荣泽明), LIU J X (刘家旭), et al. Low Catalysis Communications, 2016, 84(6): 147-150.
temperature CO 2 hydrogenation to CH 3OH over modified nanoporous [23] POROSOFF M D, KATTEL S, LI W H, et al. Identifying trends and
cobalt catalyst[J]. Fine Chemicals (精细化工), 2020, 37(12): 2510- descriptors for selective CO 2 conversion to CO over transition metal
2517. carbides[J]. Chemical Communications, 2015, 51(32): 6988-6991.
[3] WANG Y (王彦), WANG X Y (王晓月), CAO R W (曹瑞文), et al. [24] LIU M J (刘孟杰), DING W (丁巍), DAI Y C (戴咏川), et al.
Research progress of reaction mechanism of carbon dioxide Preparation of Au/β-Mo 2C catalyst with high thermal stability and its
hydrogenation to methanol[J]. Journal of Liaoning Petrochemical performance in the reverse water-gas shift[J]. Journal of Fuel
University (辽宁石油化工大学学报), 2020, 40(4): 11-20. Chemistry and Technology (燃料化学学报), 2020, 48(3): 349-356.
[4] ZHANG W T, DING W, YAO Z W, et al. A simple glucose route to [25] MA Y, GUO Z L, JIANG Q, et al. Molybdenum carbide clusters for
nickel and cobalt phosphide catalysts[J]. Phosphorus, Sulfur, and thermal conversion of CO 2 to CO via reverse water-gas shift reaction
Silicon and the Related Elements, 2021, 196(9): 826-831. [J]. Journal of Energy Chemistry, 2020, 50(11): 37-43.
[5] WANG B W, WANG C Y, YU W X. Effects of Mo 2C loading and [26] HUO X D, WANG Z Q, HUANG J J, et al. One-step synthesis of
H 2S concentration on Mo 2C/Al 2O 3 catalyst applied in sulfur-resistant bulk Mo and Ni-Mo carbides for methanation[J]. RSC Advances,
methanation[J]. Applied Organometallic Chemistry, 2019, 33(11): 2016, 6(29): 24353-24360.
5208-5217. [27] LI Y, CHEN Y M, YU H P, et al. Bimetallic Ni-Co catalysts for
[6] MONDAL A, SINHA K, PAUL A, et al. Large scale synthesis of co-production of methane and liquid fuels from syngas[J]. Catalysis
Mo 2C nanoparticle incorporated carbon nanosheet (Mo 2C-C) for Today, 2020, 36(5): 167-174.
enhanced hydrogen evolution reaction[J]. International Journal of [28] CHEN Y K, YU J Y, JIA J, et al. Metallic Ni 3Mo 3N porous microrods
Hydrogen Energy, 2020, 45(37): 18623-18634. with abundant catalytic sites as efficient electrocatalyst for large
[7] HUO X D, WANG Z Q, HUANG J J, et al. Bulk Mo and Co-Mo current density and superstability of hydrogen evolution reaction and
carbides as catalysts for methanation[J]. Catalysis Communications, water splitting[J]. Applied Catalysis B: Environmental, 2020, 272:
2016, 79(3): 39-44. 118956-118964.
[8] RANHOTRA G S, BELL A T, REIMER J A. Catalysis over molybdenum [29] CHENG J M, HUANG W. Effect of cobalt (nickel) content on the
carbides and nitrides: Ⅱ. Studies of CO hydrogenation and C 2H 6 catalytic performance of molybdenum carbides in dry-methane
hydrogenolysis[J]. Journal of Catalysis, 1987, 108(1): 40-49. reforming[J]. Fuel Processing Technology, 2010, 91(2): 185-193.
[9] JIN G Z (靳广洲), ZHU J H (朱建华), JU H L (俱虎良), et al. [30] ZHANG Q (张强), DING W (丁巍), WANG D C (王鼎聪), et al.
Preparation of molybdenum carbide catalyst and its hydrodesulfurization Preparation, characterization and catalytic hydrotreating performance
performance for thiophene[J]. CIESC Journal (化工学报), 2006, of stepped presulfurized Mo-Ni/γ-Al 2O 3 catalyst[J]. Acta Petrolei
57(4): 799-804. Sinica (Petroleum Processing Section) (石油学报: 石油加工), 2017,
[10] ZHANG X L (张香玲), MA Q X (马清祥), ZHAO T S (赵天生), et al. 33(1): 32-41.
Progresses in the research for the catalytic hydrogenation of carbon [31] RANJBAR A, IRANKHAH A, AGHAMIRI S F. Catalytic activity of
dioxide to methanol[J]. Petrochemical Technology (石油化工), 2017, rare earth and alkali metal promoted (Ce, La, Mg, K) Ni/Al 2O 3
46(5): 637-642. nanocatalysts in reverse water gas shift reaction[J]. Research on
[11] YAO Z W, SHI C. Development of a catalytic cycle in molybdenum Chemical Intermediates, 2019, 45(10): 5124-5141.
carbide catalyzed NO/CO reaction[J]. Catalysis Letters, 2009, 130(1/2): [32] DENG L D, AI X, XIE F Q, et al. Efficient Ni-based catalysts for low-
239-245. temperature reverse water-gas shift (RWGS) reaction[J]. Chemistry-
[12] ZHANG L (张亮), LIAN J H (连晶红), YAN C F (闫常峰), et al. An Asian Journal, 2021, 16(8): 949-958.
Preparation of Mo 2C/Al 2O 3 and its catalytic performance on steam [33] ABOLFAZL G K, AHMAD S, MOHAMMAD O. Development of
reforming of dimethyl ether[J]. Advances in New and Renewable Ni-Mo/Al 2O 3 catalyst for reverse water gas shift (RWGS) reaction[J].
Energy (新能源进展), 2018, 6(5): 365-370. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 6841-6847.
[13] PERRET N, WANG X D, DELANNOY L, et al. Enhanced selective [34] ZHANG R Y, WEI A L, ZHU M, et al. Tuning reverse water gas shift
nitroarene hydrogenation over Au supported on β-Mo 2C and β-Mo 2C/ and methanation reactions during CO 2 reduction on Ni catalysts via
Al 2O 3[J]. Journal of Catalysis, 2011, 286(10): 172-183. surface modification by MoO x[J]. Journal of CO 2 Utilization, 2021,
[14] CAMILA G S, FABIO B P, VICTOR T S. Influence of the support on 52: 101678-101689.
the activity of a supported nickel-promoted molybdenum carbide [35] PAWELEC B, DAMVANOVA S, ARISHTIROVA K, et al. Structural
catalyst for dry reforming of methane[J]. Journal of Catalysis, 2019, and surface features of PtNi catalysts for reforming of methane with
375(5): 507-518. CO 2[J]. Applied Catalysis A: General, 2007, 323: 188-201.
[15] FAN F (范峰), LING F X (凌凤香), WANG S J (王少军), et al. Study [36] JOZWIAK W K, NOWOSIELSKA M, RYNKOWSKI J. Reforming
on surface alkalinity of alumina and molybdenum metal loading[J]. of methane with carbon dioxide over supported bimetallic catalysts
Petrochemical Technology (石油化工), 2020, 49(11): 1043-1048. containing Ni and noble metal Ⅰ. Characterization and activity of
[16] HUANG J N (黄江南), ZOU H B (邹汉波), CHEN S Z (陈胜洲), SiO 2 supported Ni-Rh catalysts[J]. Applied Catalysis A: General,
et al. NiMoC/γ-Al 2O 3 catalyst for tri-reforming of methane[J]. 2005, 280(2): 233-244.