Page 130 - 《精细化工》2022年第6期
P. 130

·1196·                            精细化工   FINE CHEMICALS                                 第 39 卷

            CH 4 选择性达到 84.37%,CO 选择性仅为 15.63%。                     Petrochemical Technology (石油化工), 2012, 41(3): 254-259.
                                                               [17] WANG Y H (王昱涵), BAI S Y (白思雨), CUI L J (崔丽杰), et al.
            说明助剂 Ni 与 Mo 相互作用形成了 Ni 3 Mo 3 N 物种,                   Catalytic activity and sulfur-resistance stability of Ni-Mo-based catalysts
            使纳米粒子分散更加均匀,更有助于 CH 4 的生成。                             for syngas methanation[J]. CIESC Journal (化工学报), 2018, 69(5):
                                                                   2063-2072.
            稳定性实验表明,400  ℃的反应温度下,这类催化                          [18]  ZHANG A J, ZHU A M, CHEN B B, et al. In-situ synthesis of nickel
                                                                   modified molybdenum carbide catalyst for dry reforming of methane
            剂在 RWGS 反应中均具有良好的 CO 2 转化率和稳定                          [J]. Catalysis Communications, 2011, 12(9): 803-807.
            性。其中,MCAS 催化剂在低温下更易于向 CO 转                         [19]  YANG L, PASTOR-PEREZ L, GU S, et al. Highly efficient Ni/CeO 2-
                                                                   Al 2O 3 catalysts for CO 2 upgrading via reverse water-gas shift: Effect
            化;而 MNCAS 催化剂更易于向 CH 4 转化。这一结                          of selected transition metal promoters[J]. Applied Catalysis B:
            果有望为新型 CO 2 加氢处理催化剂的制备提供一定                             Environmental, 2018, 232(3): 464-471.
                                                               [20]  CHEN X Y, DING W, YAO Z W, et al. Novel synthesis of a NiMoP
            理论依据。                                                  phosphide catalyst via carbothermal reduction for dry reforming of
                                                                   methane[J]. Catalysis Science & Technology, 2021, 11(20): 6654-6658.
            参考文献:                                              [21]  MARC D P, YANG X F, BOSCOBOINIK J A, et al. Molybdenum
                                                                   carbide as alternative catalysts to precious metals for highly selective
            [1]   ZHOU Y W (周郁文), SU T M (苏通明), JIANG Y X (蒋月秀), et al.   reduction of CO 2 to CO[J]. Angewandte Chemie International Edition,
                 Effect of Co loading amount on catalytic performance of Co/TiO 2   2014, 53(26): 6705-6711.
                 catalysts for CO 2 methanation[J]. Fine Chemicals (精细化工), 2018,   [22]  GAO J J, WU Y, JIA C M, et al. Controllable synthesis of α-MoC 1-x
                 35(1): 72-80.                                     and β-Mo 2C nanowires for highly selective CO 2 reduction to CO[J].
            [2]   LI J J (李静静), RONG Z M (荣泽明), LIU J X (刘家旭), et al. Low   Catalysis Communications, 2016, 84(6): 147-150.
                 temperature CO 2 hydrogenation to CH 3OH over modified nanoporous   [23]  POROSOFF M D, KATTEL S, LI W H, et al. Identifying trends and
                 cobalt catalyst[J]. Fine Chemicals (精细化工), 2020, 37(12): 2510-   descriptors for selective CO 2 conversion to CO over transition metal
                 2517.                                             carbides[J]. Chemical Communications, 2015, 51(32): 6988-6991.
            [3]   WANG Y (王彦), WANG X Y (王晓月), CAO R W (曹瑞文), et al.   [24]  LIU M J (刘孟杰), DING  W (丁巍), DAI  Y C (戴咏川),  et al.
                 Research progress of  reaction mechanism of carbon dioxide   Preparation of Au/β-Mo 2C catalyst with high thermal stability and its
                 hydrogenation to methanol[J]. Journal of Liaoning Petrochemical   performance in the reverse  water-gas shift[J]. Journal of Fuel
                 University (辽宁石油化工大学学报), 2020, 40(4): 11-20.      Chemistry and Technology (燃料化学学报), 2020, 48(3): 349-356.
            [4]   ZHANG W T, DING W, YAO Z W, et al. A simple glucose route to   [25]  MA Y, GUO Z L, JIANG Q, et al. Molybdenum carbide clusters for
                 nickel and cobalt  phosphide catalysts[J]. Phosphorus, Sulfur, and   thermal conversion of CO 2 to CO via reverse water-gas shift reaction
                 Silicon and the Related Elements, 2021, 196(9): 826-831.   [J]. Journal of Energy Chemistry, 2020, 50(11): 37-43.
            [5]   WANG B W, WANG C Y, YU W X. Effects of Mo 2C loading and   [26]  HUO X D, WANG Z Q, HUANG J J, et al. One-step synthesis of
                 H 2S concentration on Mo 2C/Al 2O 3 catalyst applied in sulfur-resistant   bulk Mo and Ni-Mo carbides for methanation[J]. RSC Advances,
                 methanation[J]. Applied Organometallic Chemistry, 2019, 33(11):   2016, 6(29): 24353-24360.
                 5208-5217.                                    [27]  LI Y, CHEN Y M, YU H P,  et al. Bimetallic  Ni-Co catalysts for
            [6]   MONDAL A, SINHA K, PAUL  A,  et al. Large scale synthesis of   co-production of methane and liquid fuels from syngas[J]. Catalysis
                 Mo 2C nanoparticle incorporated carbon  nanosheet  (Mo 2C-C) for   Today, 2020, 36(5): 167-174.
                 enhanced hydrogen evolution reaction[J]. International Journal of   [28]  CHEN Y K, YU J Y, JIA J, et al. Metallic Ni 3Mo 3N porous microrods
                 Hydrogen Energy, 2020, 45(37): 18623-18634.       with abundant catalytic sites as efficient electrocatalyst  for large
            [7]   HUO X D, WANG Z Q, HUANG J J, et al. Bulk Mo and Co-Mo   current density and superstability of hydrogen evolution reaction and
                 carbides as catalysts for methanation[J]. Catalysis Communications,   water splitting[J].  Applied Catalysis B: Environmental,  2020, 272:
                 2016, 79(3): 39-44.                               118956-118964.
            [8]   RANHOTRA G S, BELL A T, REIMER J A. Catalysis over molybdenum   [29]  CHENG J M, HUANG W. Effect of cobalt (nickel) content on the
                 carbides and nitrides:  Ⅱ. Studies of  CO hydrogenation and C 2H 6   catalytic performance of  molybdenum carbides in dry-methane
                 hydrogenolysis[J]. Journal of Catalysis, 1987, 108(1): 40-49.   reforming[J]. Fuel Processing Technology, 2010, 91(2): 185-193.
            [9]   JIN G Z (靳广洲), ZHU J H (朱建华), JU H  L (俱虎良),  et al.   [30]  ZHANG Q (张强), DING W (丁巍), WANG D C (王鼎聪),  et al.
                 Preparation of molybdenum carbide catalyst and its hydrodesulfurization   Preparation, characterization and catalytic hydrotreating performance
                 performance for thiophene[J]. CIESC Journal (化工学报), 2006,   of stepped presulfurized Mo-Ni/γ-Al 2O 3 catalyst[J]. Acta Petrolei
                 57(4): 799-804.                                   Sinica (Petroleum Processing Section) (石油学报:  石油加工), 2017,
            [10]  ZHANG X L (张香玲), MA Q X (马清祥), ZHAO T S (赵天生), et al.   33(1): 32-41.
                 Progresses in the research for the catalytic hydrogenation of carbon   [31]  RANJBAR A, IRANKHAH A, AGHAMIRI S F. Catalytic activity of
                 dioxide to methanol[J]. Petrochemical Technology (石油化工), 2017,   rare earth and alkali metal promoted (Ce, La, Mg, K) Ni/Al 2O 3
                 46(5): 637-642.                                   nanocatalysts in reverse water gas shift reaction[J]. Research on
            [11]  YAO Z W, SHI C. Development of a catalytic cycle in molybdenum   Chemical Intermediates, 2019, 45(10): 5124-5141.
                 carbide catalyzed NO/CO reaction[J]. Catalysis Letters, 2009, 130(1/2):   [32]  DENG L D, AI X, XIE F Q, et al. Efficient Ni-based catalysts for low-
                 239-245.                                          temperature reverse water-gas shift (RWGS) reaction[J]. Chemistry-
            [12] ZHANG L (张亮), LIAN J H (连晶红), YAN C F (闫常峰), et al.   An Asian Journal, 2021, 16(8): 949-958.
                 Preparation of  Mo 2C/Al 2O 3 and its catalytic performance  on  steam   [33]  ABOLFAZL G K, AHMAD S, MOHAMMAD O. Development of
                 reforming of dimethyl ether[J]. Advances in New and Renewable   Ni-Mo/Al 2O 3 catalyst for reverse water gas shift (RWGS) reaction[J].
                 Energy (新能源进展), 2018, 6(5): 365-370.              Journal of Nanoscience and Nanotechnology, 2014, 14(9): 6841-6847.
            [13]  PERRET N, WANG X D, DELANNOY L, et al. Enhanced selective   [34]  ZHANG R Y, WEI A L, ZHU M, et al. Tuning reverse water gas shift
                 nitroarene hydrogenation over Au supported on β-Mo 2C and β-Mo 2C/   and methanation reactions during CO 2 reduction on Ni catalysts via
                 Al 2O 3[J]. Journal of Catalysis, 2011, 286(10): 172-183.   surface modification by MoO x[J]. Journal of CO 2 Utilization, 2021,
            [14]  CAMILA G S, FABIO B P, VICTOR T S. Influence of the support on   52: 101678-101689.
                 the activity of a supported nickel-promoted  molybdenum  carbide   [35]  PAWELEC B, DAMVANOVA S, ARISHTIROVA K, et al. Structural
                 catalyst for dry reforming of methane[J]. Journal of Catalysis, 2019,   and surface features of PtNi catalysts for reforming of methane with
                 375(5): 507-518.                                  CO 2[J]. Applied Catalysis A: General, 2007, 323: 188-201.
            [15]  FAN F (范峰), LING F X (凌凤香), WANG S J (王少军), et al. Study   [36]  JOZWIAK W K, NOWOSIELSKA M, RYNKOWSKI J. Reforming
                 on surface alkalinity of alumina and molybdenum metal loading[J].   of methane with carbon dioxide over supported bimetallic catalysts
                 Petrochemical Technology (石油化工), 2020, 49(11): 1043-1048.   containing Ni and noble metal  Ⅰ.  Characterization and activity of
            [16]  HUANG J N (黄江南), ZOU H B (邹汉波), CHEN S Z (陈胜洲),   SiO 2 supported Ni-Rh catalysts[J]. Applied Catalysis A:  General,
                 et al. NiMoC/γ-Al 2O 3 catalyst for tri-reforming  of methane[J].   2005, 280(2): 233-244.
   125   126   127   128   129   130   131   132   133   134   135