Page 156 - 《精细化工》2022年第6期
P. 156
·1222· 精细化工 FINE CHEMICALS 第 39 卷
3 结论 oncogenic-RAS-harboring cancer cells[J]. Chemistry & Biology,
2008, 15(3): 234-245.
[10] RON S, MIKHAIL S S, DEREK A P. Resolving the role of
利用金属-多酚网络结构的特性,设计、制备了 lipoxygenases in the initiation and execution of ferroptosis[J]. ACS
Ⅲ
一种 SRF@Fe EGCG 纳米络合物,实现多种药物协 Central Science, 2018, 4(3): 387-396.
[11] LUBRANO V, BALZAN S. LOX-1 and ROS, inseparable factors in
Ⅲ
同的效果。制备的 SRF@Fe EGCG 纳米络合物平均 the process of endothelial damage[J]. Free Radical Research, 2014,
流体力学直径为 205.6 nm,粒径分布均匀;Zeta 电 48(8): 841-848.
[12] KHAN N, AFAQ F, SALEEM M, et al. Targeting multiple signaling
位为–30 mV,纳米粒子较稳定;包封率和载药量分 pathways by green tea polyphenol(−)-epigallocatechin-3-gallate[J].
别为 51.1% 和 92.0% , 各组分物 质的量比 为 Cancer Research, 2006, 66(5): 2500-2505.
3+
n(EGCG)∶n(Fe )∶n(SRF) = 1∶1.79∶14.14;证明 [13] ELENA L, YVES M D, RAYMOND M, et al. Green tea polyphenol
epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy[J].
纳米络合物的成功合成。体外细胞实验表明, Clinical Nutrition, 2013, 32(6): 894-903.
[14] ANSHU M R, SHRINATH B, SANTOSH K K. Epigallocatechin-
SRF@Fe EGCG 纳米络合物对 Hela 细胞的生长抑
Ⅲ
3-gallate induces apoptosis in estrogen receptor-negative human
制作用明显,细胞存活率约为 30%,当加入 Fer-1 breast carcinoma cells via modulation in protein expression of p53
及 DFO 后,细胞存活率有所提高,表明制备的 SRF@Fe and bax and caspase-3 activation[J]. Molecular Cancer Therapeutics,
2005, 49(1): 81-90.
Ⅲ
EGCG 纳米络合物可通过诱导细胞铁死亡过程促 [15] GU J J, QIAO K S, SUN P, et al. Study of egcg induced apoptosis in
使肿瘤细胞死亡。 lung cancer cells by inhibiting PI3K/Akt signaling pathway[J].
European Review for Medical and Pharmacological Sciences, 2018,
Ⅲ
设计的 SRF@Fe EGCG 纳米络合物作为一种 22(14): 4557-4563.
以 MPN 结构为载体的新型纳米络合物,为之后的纳 [16] MARIA I C, RAFAL Z, MARIA J L, et al. Implication of Akt,
ERK1/2 and alternative p38MAPK signalling pathways in human
米药物设计以及耐药癌症治疗提供了一种思路。 colon cancer cell apoptosis induced by green tea egcg[J]. Food and
Chemical Toxicology, 2015, 84: 125-132.
参考文献: [17] PENG G, DAN A D, STEPHANIE J M, et al. Green tea polyphenol
(−)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression
[1] SCOTT J D, KATHRYN M L, MICHALE R L, et al. Ferroptosis: An
iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, in colon carcinogenesis[J]. Molecular Carcinogenesis, 2006, 45(5):
309-319.
149(5): 1060-1072.
[2] XIE Y X, HOU W L, SONG X X, et al. Ferroptosis: Process and [18] CHEN Y, WANG X Q, ZHANG Q, et al. (−)-Epigallocatechin-
function[J]. Cell Death and Differentiation, 2016, 23(3): 369-379. 3-gallate inhibits colorectal cancer stem cells by suppressing
[3] YE Z, LIU W S, ZHUO Q F, et al. Ferroptosis: Final destination for wnt/β-catenin pathway[J]. Nutrients, 2017, 9 (6): 572.
cancer[J]. Cell Proliferation, 2020, 53(3): e12761. [19] LIANG H S, LI J, HE Y, et al. Engineering multifunctional films
[4] D'HERDE K, KRYSKO D V. Ferroptosis oxidized PEs trigger based on metal-phenolic networks for rational pH-responsive
death[J]. Nature Chemical Biology, 2017, 13(1): 4-5. delivery and cell imaging[J]. ACS Biomaterials Science &
[5] SUZY V T, DAVID H M, BIBBIN T P. Iron and cancer[J]. Annual Engineering, 2016, 2(3): 317-325.
Review of Nutrition, 2018, 38(1): 97-125. [20] LIU T, LIU W L, ZHANG M K, et al. Ferrous-supply-regeneration
[6] SU Y W, ZHAO B, ZHOU L F, et al. Ferroptosis, a novel nanoengineering for cancer-cell-specific ferroptosis in combination
pharmacological mechanism of anti-cancer drugs[J]. Cancer Letters, with imaging-guided photodynamic therapy[J]. ACS Nano, 2018,
2020, 483: 127-136. 12(2): 12181-12192.
[7] YANG W S, KIM K J, GASCHLER M M, et al. Peroxidation of [21] FENG C (冯超). Nanogels system based on chitosan for oral drug
polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. delivery and the study of its transport mechanism across intestinal
Procceedings of the National Academy of Sciences of the United epithelium[D]. Qingdao: Ocean University of China (中国海洋大
States of America, 2016, 113(34): E4966-E4975. 学), 2014.
[8] WAN S Y, ROHITHA S, MATTHEW E W, et al. Regulation of [22] LI C Q (李超群), TANG H X (汤红霞), ZHANG Y (张悦), et al.
ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331. Advance in construction of ferroptosis-inducing nanomedicine for
[9] WAN S Y, BRENT R S. Synthetic lethal screening identifies cancer therapy[J]. Acta Pharmaceutica Sinica (药学学报), 2020,
compounds activating iron-dependent, nonapoptotic cell death in 55(9): 2099-2109.
(上接第 1217 页) Biotechnology, 2013, 88(4): 672-679.
[17] AN B Y, FAN H L, WU Z F, et al. Ultrasound-assisted [21] HABIBI Z, MOHAMMADI M, YOUSEFI M. Enzymatic hydrolysis
enantioselective esterification of ibuprofen catalyzed by a flower-like of racemic ibuprofen esters using Rhizomucor miehei lipase immobilized
nanobioreactor[J]. Molecules, 2016, 21(5): 565. on different supports[J]. Process Biochemistry, 2013, 48(4): 669-676.
[18] MEMARPOOR-YAZDI M, KARBALAEI-HEIDARI H R, [22] SANCHEZ A, VALERO F, LAFUENTE J, et al. Highly
DOROODMAND M M. Enantioselective hydrolysis of ibuprofen enantioselective esterification of racemic ibuprofen in a packed bed
ethyl ester by a thermophilic immobilized lipase, ELT, from reactor using immobilised Rhizomucor miehei lipase[J]. Enzyme and
Rhodothermus marinus[J]. Biochemical Engineering Journal, 2018, Microbial Technology, 2000, 27(1): 157-166.
130: 55-65. [23] CARVALHO P O, CONTESINI F J, BIZACO R, et al. Optimization
[19] YANG G S, YING L, OU Z M, et al. Resolution of ibuprofen ester of enantioselective resolution of racemic ibuprofen by native lipase
by catalytic antibodies in water-miscible organic-solvents[J]. Chinese from Aspergillus niger[J]. Journal of Industrial Microbiology &
Journal of Chemical Engineering, 2009, 17(3): 506-512. Biotechnology, 2006, 33(8): 713-718.
[20] GONAWAN F N, YON L S, KAMARUDDIN A H, et al. Effect of [24] YADAV G D, LATHI P S. Lipase catalyzed transesterification of
co-solvent addition on the reaction kinetics of the lipase-catalyzed methyl acetoacetate with n-butanol[J]. Journal of Molecular Catalysis
resolution of ibuprofen ester[J]. Journal of Chemical Technology & B: Enzymatic, 2005, 32(3): 107-113.