Page 124 - 《精细化工》2022年第7期
P. 124

·1410·                            精细化工   FINE CHEMICALS                                 第 39 卷

            [18]  CAO J, CHEN L Y, LI M H, et al. Two-phase systems developed with   2017, 79: 151-157.
                 hydrophilic  and hydrophobic deep  eutectic solvents for  simultaneously   [23]  LEONG Y K, LAN J C W, LOH H S, et al. Cloud-point extraction of
                 extracting various  bioactive compounds with different polarities[J].   green-polymers from Cupriavidus necator lysate using thermoseparating-
                 Green Chemistry, 2018, 20(8): 1879-1886.          based aqueous two-phase extraction[J]. Journal of Bioscience and
            [19]  CAO J, CHEN  L  Y,  LI M H,  et al. Efficient extraction of   Bioengineering, 2017, 123(3): 370-375.
                 proanthocyanidin from  Ginkgo biloba  leaves employing rationally   [24]  FENG J (冯靖), PENG X M (彭效明), LI C Q (李翠清), et al.
                 designed deep eutectic solvent-water mixture and evaluation of the   Antioxidant activity and stability of flavonoids from ginkgo leaves[J].
                 antioxidant activity[J]. Journal of Pharmaceutical Biomedical Analysis,   Food Science and Technology (食品科技), 2019, 44(4): 244-249.
                 2018, 158: 317-326.                           [25]  LIU K W (刘康万). Studies on the selective extraction and stability
            [20]  SU E Z, YANG M, CAO J, et al. Deep eutectic solvents as green   of ginkgolide A  from  Ginkgo Biloba L.[D]. Nanning: Guangxi
                 media for efficient extraction  of terpene trilactones from Ginkgo   University (广西大学), 2016.
                 biloba leaves[J]. Journal of Liquid  Chromatography  & Related   [26]  YAN H B (严汉彬), LUO W S (骆玮诗), HAN Z (韩珍),  et al.
                 Technologies, 2017, 40(8): 385-391.               Extraction and qualitative analysis of proanthocyanidins from Pitaya
            [21]  DONG Q H, CAO J, WU R, et al. Efficient removal of ginkgolic   pee[J]. Farm Products Processing (农产品加工), 2021, (2): 9-13.
                 acids from Ginkgo biloba leaves crude extract by using hydrophobic   [27]  LEI K (雷凯). Dissolution mechanism and properties of collagen in
                 deep eutectic solvents[J]. Industrial Crops and Products, 2021, 166(1):   nitrogenous-containing solvents[D]. Jinan: Qilu University of Technology
                 113462.                                           (齐鲁工业大学), 2018.
            [22]  NG H S, TEOH A N, LIM J C W, et al. Thermo-sensitive aqueous   [28]  ZHANG R (张瑞). Study on  technology extraction, separation and
                 biphasic extraction of polyphenols from  Camellia sinensis var.   purification of phytic acid[D]. Hefei: Hefei University of Technology
                 assamica leaves[J]. Journal of Taiwan Institute of Chemical Engineers,   (合肥工业大学), 2013.

            (上接第 1359 页)                                       [30]  GUO J, XU  Y  W, LI K,  et al. Regio- and enantioselective
            [18]  FUJITA M. Metal-directed self-assembly of two- and three-dimensional   photodimerization  within the confined space of a homochiral
                 synthetic receptors[J]. Chemical Society Reviews, 1998, 27: 417-425.   ruthenium/palladium heterometallic coordination cage[J]. Angewandte
            [19]  PILGRIM B S, CHAMPNESS N R. Metal-organic frameworks and   Chemie, 2017, 129(14): 3910-3914.
                 metal-organic  cages-A perspective[J].  ChemPlusChem, 2020, 85(8):   [31]  CHU D, GONG W, JIANG H, et al. Boosting enantioselectivity of
                 1842-1856.                                        chiral molecular catalysts with  supramolecular metal-organic cages
            [20]  JING X, HE C, YANG Y,  et al.  A  metal-organic tetrahedron as a   [J]. CCS Chemistry, 2021, 3: 1692-1700.
                 redox vehicle to encapsulate organic dyes for photocatalytic proton   [32]  YOSHIZAWA M,  TAKEYAMA Y, KUSUKAWA T, et  al. Cavity-
                 reduction[J]. Journal of the American Chemical Society, 2015, 137(11):   directed, highly stereoselective [2+2] photodimerization of olefins
                 3967-3974.                                        within self-assembled coordination cages[J].  Angewandte Chemie
            [21]  YANG L, HE C, LIU X, et al. Supramolecular photoinduced electron   International Edition, 2002, 41(8): 1347-1349.
                 transfer  between a redox-active hexanuclear metal-organic cylinder   [33]  YOSHIZAWA M,  TAMURA M, FUJITA M,  et al. Diels-Alder in
                 and an encapsulated Ruthenium( Ⅱ ) complex[J]. Chemistry-A   aqueous molecular hosts: Unusual regioselectivity and efficient
                 European Journal, 2016, 22(15): 5253-5260.        catalysis[J]. Science, 2006, 312(5771): 251-254.
            [22]  JING X,  YANG Y, HE C,  et al. Control of redox events by dye   [34]  MURASE T, NISHIJIMA Y, FUJITA M. Cage-catalyzed Knoevenagel
                 encapsulation applied to light-driven splitting of hydrogen sulfide[J].   condensation  under neutral conditions in water[J]. Journal of the
                 Angewandte Chemie International Edition, 2017, 56(39): 11759-   American Chemical Society, 2012, 134(1): 162-164.
                 11763.                                        [35]  LI S C, CAI L X, ZHOU  L P,  et al. Supramolecular synthesis of
            [23]  WU K, LI K, CHEN S,  et al. The redox coupling effect in a   coumarin derivatives catalyzed by a coordination-assembled cage in
                 photocatalytic Ru(Ⅱ)-Pd(Ⅱ) cage with TTF guest as electron relay   aqueous solution[J]. Science China Chemistry, 2019, 62: 713- 718.
                 mediator for visible-light hydrogen-evolving Promotion[J]. Angewandte   [36]  CAULDER D L,  RAYMOND K N.  The rational design of high
                 Chemie International Edition, 2020, 59(7): 2639-2643.   symmetry coordination clusters[J]. Journal of the Chemical Society
                                                                   Dalton Transactions, 1999, 8(8): 1185-1200.
            [24]  LI K, ZHANG L, YAN C, et al. Stepwise assembly of Pd 6(RuL 3) 8
                 nanoscale rhombododecahedral metal-organic cages via metalloligand   [37]  CAULDER  D L,  RAYMOND K N.  Supermolecules by design[J].
                 strategy for guest trapping  and  protection[J]. Journal of  the  American   Accounts of Chemical Research, 1999, 32(11): 975-982.
                 Chemical Society, 2014, 136(12): 4456-4459.   [38]  CAULDER D  L,  POWERS R E, PARAC T N,  et al. The self-
            [25]  CHEN Z, LONG Z, WANG X, et al. Cobalt-based metal-organic cages   assembly of a predesigned tetrahedral M 4L 6 supramolecular cluster[J].
                 for visible-light-driven water oxidation[J]. Inorganic Chemistry, 2021,   Angewandte Chemie International Edition, 1998, 37(13/14): 1840-1843.
                 60(14): 10380-10386.                          [39]  BENDER  T A, BERGMAN  R G,  RAYMOND K N,  et al. A
            [26]  QI X, ZHONG R, CHEN M, et al. Single metal-organic cage decorated   supramolecular strategy for selective catalytic hydrogenation
                 with an Ir(Ⅲ) complex for CO 2 photoreduction[J]. ACS  Catalysis,   independent of remote  chain length[J]. Journal of the American
                 2021, 11(12): 7241-7248.                          Chemical Society, 2019, 141(30): 11806-11810.
            [27]  SUTRADHAR M, GUEDES D, POMBEIRO  A.  A new  cyclic   [40]  BENDER T A, MORIMOTO M, BERGMAN R G, et al. Supramolecular
                 binuclear Ni(Ⅲ) complex as a  catalyst towards nitroaldol (Henry)   host-selective activation of iodoarenes by encapsulated organometallics
                 reaction[J]. Catalysis Communications, 2014, 57: 103-106.   [J]. Journal of the American Chemical Society, 2019, 141(4): 1701-
            [28]  WU X, HE C, WU X, et al. An L-proline functionalized metallo-organic   1706.
                 triangle as size-selective homogeneous catalyst for asymmetry   [41]  HE C, WANG J, ZHAO L, et al.  A photoactive basket-like  metal-
                 catalyzing aldol reactions[J]. Chemical Communications,  2011, 47:   organic tetragon worked as an enzymatic  molecular flask for light
                 8415-8417.                                        driven H 2 production[J]. Chemical  Communications, 2012, 49(6):
            [29]  YANG L, ZHAO L, ZHOU Z, et al. A thiourea-functionalized metal-   627-629.
                 organic macrocycle for the catalysis of Michael additions and   [42]  ZHAO L, CAI J, LI  Y,  et al.  A host-guest approach to  combining
                 prominent size-selective effect[J]. Dalton Transactions, 2017, 46(12):   enzymatic and artificial catalysis for catalyzing biomimetic
                 4086-4092.                                        monooxygenation[J]. Nature Communications, 2020, 11(1): 2903.
   119   120   121   122   123   124   125   126   127   128   129