Page 124 - 《精细化工》2022年第7期
P. 124
·1410· 精细化工 FINE CHEMICALS 第 39 卷
[18] CAO J, CHEN L Y, LI M H, et al. Two-phase systems developed with 2017, 79: 151-157.
hydrophilic and hydrophobic deep eutectic solvents for simultaneously [23] LEONG Y K, LAN J C W, LOH H S, et al. Cloud-point extraction of
extracting various bioactive compounds with different polarities[J]. green-polymers from Cupriavidus necator lysate using thermoseparating-
Green Chemistry, 2018, 20(8): 1879-1886. based aqueous two-phase extraction[J]. Journal of Bioscience and
[19] CAO J, CHEN L Y, LI M H, et al. Efficient extraction of Bioengineering, 2017, 123(3): 370-375.
proanthocyanidin from Ginkgo biloba leaves employing rationally [24] FENG J (冯靖), PENG X M (彭效明), LI C Q (李翠清), et al.
designed deep eutectic solvent-water mixture and evaluation of the Antioxidant activity and stability of flavonoids from ginkgo leaves[J].
antioxidant activity[J]. Journal of Pharmaceutical Biomedical Analysis, Food Science and Technology (食品科技), 2019, 44(4): 244-249.
2018, 158: 317-326. [25] LIU K W (刘康万). Studies on the selective extraction and stability
[20] SU E Z, YANG M, CAO J, et al. Deep eutectic solvents as green of ginkgolide A from Ginkgo Biloba L.[D]. Nanning: Guangxi
media for efficient extraction of terpene trilactones from Ginkgo University (广西大学), 2016.
biloba leaves[J]. Journal of Liquid Chromatography & Related [26] YAN H B (严汉彬), LUO W S (骆玮诗), HAN Z (韩珍), et al.
Technologies, 2017, 40(8): 385-391. Extraction and qualitative analysis of proanthocyanidins from Pitaya
[21] DONG Q H, CAO J, WU R, et al. Efficient removal of ginkgolic pee[J]. Farm Products Processing (农产品加工), 2021, (2): 9-13.
acids from Ginkgo biloba leaves crude extract by using hydrophobic [27] LEI K (雷凯). Dissolution mechanism and properties of collagen in
deep eutectic solvents[J]. Industrial Crops and Products, 2021, 166(1): nitrogenous-containing solvents[D]. Jinan: Qilu University of Technology
113462. (齐鲁工业大学), 2018.
[22] NG H S, TEOH A N, LIM J C W, et al. Thermo-sensitive aqueous [28] ZHANG R (张瑞). Study on technology extraction, separation and
biphasic extraction of polyphenols from Camellia sinensis var. purification of phytic acid[D]. Hefei: Hefei University of Technology
assamica leaves[J]. Journal of Taiwan Institute of Chemical Engineers, (合肥工业大学), 2013.
(上接第 1359 页) [30] GUO J, XU Y W, LI K, et al. Regio- and enantioselective
[18] FUJITA M. Metal-directed self-assembly of two- and three-dimensional photodimerization within the confined space of a homochiral
synthetic receptors[J]. Chemical Society Reviews, 1998, 27: 417-425. ruthenium/palladium heterometallic coordination cage[J]. Angewandte
[19] PILGRIM B S, CHAMPNESS N R. Metal-organic frameworks and Chemie, 2017, 129(14): 3910-3914.
metal-organic cages-A perspective[J]. ChemPlusChem, 2020, 85(8): [31] CHU D, GONG W, JIANG H, et al. Boosting enantioselectivity of
1842-1856. chiral molecular catalysts with supramolecular metal-organic cages
[20] JING X, HE C, YANG Y, et al. A metal-organic tetrahedron as a [J]. CCS Chemistry, 2021, 3: 1692-1700.
redox vehicle to encapsulate organic dyes for photocatalytic proton [32] YOSHIZAWA M, TAKEYAMA Y, KUSUKAWA T, et al. Cavity-
reduction[J]. Journal of the American Chemical Society, 2015, 137(11): directed, highly stereoselective [2+2] photodimerization of olefins
3967-3974. within self-assembled coordination cages[J]. Angewandte Chemie
[21] YANG L, HE C, LIU X, et al. Supramolecular photoinduced electron International Edition, 2002, 41(8): 1347-1349.
transfer between a redox-active hexanuclear metal-organic cylinder [33] YOSHIZAWA M, TAMURA M, FUJITA M, et al. Diels-Alder in
and an encapsulated Ruthenium( Ⅱ ) complex[J]. Chemistry-A aqueous molecular hosts: Unusual regioselectivity and efficient
European Journal, 2016, 22(15): 5253-5260. catalysis[J]. Science, 2006, 312(5771): 251-254.
[22] JING X, YANG Y, HE C, et al. Control of redox events by dye [34] MURASE T, NISHIJIMA Y, FUJITA M. Cage-catalyzed Knoevenagel
encapsulation applied to light-driven splitting of hydrogen sulfide[J]. condensation under neutral conditions in water[J]. Journal of the
Angewandte Chemie International Edition, 2017, 56(39): 11759- American Chemical Society, 2012, 134(1): 162-164.
11763. [35] LI S C, CAI L X, ZHOU L P, et al. Supramolecular synthesis of
[23] WU K, LI K, CHEN S, et al. The redox coupling effect in a coumarin derivatives catalyzed by a coordination-assembled cage in
photocatalytic Ru(Ⅱ)-Pd(Ⅱ) cage with TTF guest as electron relay aqueous solution[J]. Science China Chemistry, 2019, 62: 713- 718.
mediator for visible-light hydrogen-evolving Promotion[J]. Angewandte [36] CAULDER D L, RAYMOND K N. The rational design of high
Chemie International Edition, 2020, 59(7): 2639-2643. symmetry coordination clusters[J]. Journal of the Chemical Society
Dalton Transactions, 1999, 8(8): 1185-1200.
[24] LI K, ZHANG L, YAN C, et al. Stepwise assembly of Pd 6(RuL 3) 8
nanoscale rhombododecahedral metal-organic cages via metalloligand [37] CAULDER D L, RAYMOND K N. Supermolecules by design[J].
strategy for guest trapping and protection[J]. Journal of the American Accounts of Chemical Research, 1999, 32(11): 975-982.
Chemical Society, 2014, 136(12): 4456-4459. [38] CAULDER D L, POWERS R E, PARAC T N, et al. The self-
[25] CHEN Z, LONG Z, WANG X, et al. Cobalt-based metal-organic cages assembly of a predesigned tetrahedral M 4L 6 supramolecular cluster[J].
for visible-light-driven water oxidation[J]. Inorganic Chemistry, 2021, Angewandte Chemie International Edition, 1998, 37(13/14): 1840-1843.
60(14): 10380-10386. [39] BENDER T A, BERGMAN R G, RAYMOND K N, et al. A
[26] QI X, ZHONG R, CHEN M, et al. Single metal-organic cage decorated supramolecular strategy for selective catalytic hydrogenation
with an Ir(Ⅲ) complex for CO 2 photoreduction[J]. ACS Catalysis, independent of remote chain length[J]. Journal of the American
2021, 11(12): 7241-7248. Chemical Society, 2019, 141(30): 11806-11810.
[27] SUTRADHAR M, GUEDES D, POMBEIRO A. A new cyclic [40] BENDER T A, MORIMOTO M, BERGMAN R G, et al. Supramolecular
binuclear Ni(Ⅲ) complex as a catalyst towards nitroaldol (Henry) host-selective activation of iodoarenes by encapsulated organometallics
reaction[J]. Catalysis Communications, 2014, 57: 103-106. [J]. Journal of the American Chemical Society, 2019, 141(4): 1701-
[28] WU X, HE C, WU X, et al. An L-proline functionalized metallo-organic 1706.
triangle as size-selective homogeneous catalyst for asymmetry [41] HE C, WANG J, ZHAO L, et al. A photoactive basket-like metal-
catalyzing aldol reactions[J]. Chemical Communications, 2011, 47: organic tetragon worked as an enzymatic molecular flask for light
8415-8417. driven H 2 production[J]. Chemical Communications, 2012, 49(6):
[29] YANG L, ZHAO L, ZHOU Z, et al. A thiourea-functionalized metal- 627-629.
organic macrocycle for the catalysis of Michael additions and [42] ZHAO L, CAI J, LI Y, et al. A host-guest approach to combining
prominent size-selective effect[J]. Dalton Transactions, 2017, 46(12): enzymatic and artificial catalysis for catalyzing biomimetic
4086-4092. monooxygenation[J]. Nature Communications, 2020, 11(1): 2903.