Page 132 - 《精细化工》2022年第7期
P. 132
·1418· 精细化工 FINE CHEMICALS 第 39 卷
破坏了催化剂结构。HPW 负载量的增加提高了催化 based heteropolyacid materials[J]. Green Chemistry, 2016, 18(21):
剂 Brönsted 酸性,促进了反应中乙二醇的转化率, 5884-5889.
[13] WEE L H, WIKTOR C, TURNER S, et al. Copper benzene
催化剂孔径减小抑制 EGDE 的生成,提高 EGME 的 tricarboxylate metal-organic framework with wide permanent
选择性 , 10% HPW@HKUST-1 催 化剂酸量 为 mesopores stabilized by Keggin polyoxometallate ions[J]. Journal of
the American Chemical Society, 2012, 134(26): 10911-10919.
1.54 mmol/g,平均孔径为 2.8 nm,具有最优的催化 [14] WEE L H, JANSSENS N, BAJPE S R, et al. Heteropolyacid
性能。 encapsulated in Cu 3(BTC) 2 nanocrystals: An effective esterification
(2)以 10% HPW@HKUST-1 为催化剂,最优 catalyst[J]. Catalysis Today, 2011, 171(1): 275-280.
[15] YANG X L, QIAO L M, DAI W L. One-pot synthesis of a hierarchical
工艺条件为:催化剂用量为乙二醇质量(11.13 g)的 microporous-mesoporous phosphotungstic acid-HKUST-1 catalyst
10%,反应温度 100 ℃,烯醇比 6∶1,反应时间 4 h。 and its application in the selective oxidation of cyclopentene to
glutaraldehyde[J]. Chinese Journal of Catalysis, 2015, 36(11): 1875-
此条件下乙二醇转化率 97%,EGME 选择性 85%。
1885.
10% HPW@HKUST-1 催化剂经过 5 次使用,催化活 [16] CHUIS S Y, LOS M F, CHARMANT J P H, et al. A chemically
性仅略微下降后趋于稳定,说明催化剂具有优异的 functionalizable nanoporous material [Cu 3(TMA) 2(H 2O) 3] n[J]. Science,
1999, 283(5405): 1148-1150.
循环稳定性,具有一定的工业开发价值,并可拓展 [17] YAKOVENKO A A, REIBENSPIES J H, ZHOU H C, et al. Generation
应用于各种烯醇醚化反应。 and applications of structure envelopes for porous metal-organic
frameworks[J]. Journal of Applied Crystallography, 2013, 46(2):
参考文献: 346-353.
[18] LIU R D (刘润东), XING L Y (邢立艳), JING F C (敬凡尘), et al.
[1] YANG C L (杨春亮), TANG B L (唐保良). Gasoline additive and
Papermaking sludge-derived solid acid as catalyst for D-fructose
preparation method there of: CN105087090A[P]. 2015-11-25.
dehydration into 5-hydroxymethylfurural[J]. Fine Chemicals (精细化
[2] KIFTON A T, JOHN F. Synthesis of low molecular weight glycol
工), 2021, 38(11): 2322-2330.
ethers from oxiranes plus olefins: US5349110A[P]. 1994-09-20.
[19] SUN C Y, LIU S X, LIANG D D, et al. Highly stable crystalline
[3] RODRIGUES F A, CHAVES D M, JULIO A A, et al. Sn(Ⅱ)-
catalysts based on a microporous metal-organic framework and
exchanged Keggin silicotungstic acid-catalyzed etherification of
polyoxometalates[J]. Journal of the American Chemical Society,
glycerol and ethylene glycol with alkyl alcohols[J]. Industrial &
2009, 131(5): 1883-1888.
Engineering Chemistry Research, 2020, 59(21): 9858-9868.
[20] KOZHEVNIKOV I V. Catalysis by heteropoly acids and multicomponent
[4] KLEPACOVA K, MRAVEC D, KASZONYI A, et al. Etherification
polyoxometalates in liquid-phase reactions[J]. Chemical Reviews,
of glycerol and ethylene glycol by isobutylene[J]. Applied Catalysis
1998, 98(1): 171-198.
A: General, 2007, 328(1): 1-13.
[21] ZHANG Y (张阳), WANG D (王敦), SUN Z L (孙中亮), et al.
[5] ZHAO W Q, YI C H, YANG B L, et al. Etherification of glycerol and
Preparation and catalytic performance of a novel microporous sulfonated
isobutylene catalyzed over rare earth modified Hβ-zeolite[J]. Fuel
solid acid[J]. Fine Chemicals (精细化工), 2014, 31(5): 575-580.
Processing Technology, 2013, 112(1): 70-75.
[22] YOUN M H, KIM H, JUNG J C, et al. UV-Vis spectroscopy studies
[6] GONZALEZ M D, TABOADA E, SALAGRE P, et al. Microwave-
of H 3PMo 12−xW xO 40 heteropolyacid (HPA) catalysts in the solid state:
assisted synthesis of sulfonic acid-functionalized microporous materials
Effects of water content and polyatom substitution[J]. Journal of
for the catalytic etherification of glycerol with isobutene[J]. Green
Molecular Catalysis A: Chemical, 2005, 241(1/2): 227-232.
Chemistry, 2013, 15(8): 2230-2239.
[23] ZHANG X (张旭), SUN J M (孙晋蒙), GANG Y (刚勇), et al.
[7] LIU H L, ZHANG Z X, TANG J H, et al. Quest for pore size effect
Process optimization for synthesis of 1,4-butanediol diacrylate by
on the catalytic property of defect-engineered MOF-808-SO 4 in the
solid acid catalyst[J]. Fine Chemicals (精细化工), 2018, 35(2):
addition reaction of isobutylene with ethylene glycol[J]. Journal of
333-339.
Solid State Chemistry, 2019, 269(1): 9-15.
[24] SHAO C (邵川), WANG Y Z (王银忠), QIN D L (秦冬玲), et al.
[8] ZHOU X (周喜), LI Z X (李泽贤), ZHANG C (张超). Synthesis of
Acid-doped in situ synthesis of multi-stage well SAPO-34 and
tributyl citrate catalyzed by mixed salt of ammonium and aluminum
catalytic methanol to olefin reaction[J]. Journal of Nanjing
phosphotungstate[J]. Fine Chemicals (精细化工), 2019, 36(5): 919-
University of Technology(Natural Edition) (南京工业大学学报:自
934.
然科学版), 2021, 43(5): 600-608.
[9] ZHAO P P (赵萍萍), ZHOU Y (周瑜), WANG J (王军). Acetalization
[25] DING J J (丁佳晶), ZHAO Z Y (赵芷言), XIA F F (夏斐斐), et al.
of aldehydes (ketones) with glycol catalyzed by propane sulfonate
Preparation of 5-hydroxymethylfurfural from fructose catalyzed by
functionalized heteropolyacid salts[J]. Journal of Nanjing University
WO 3/Nb 2O 5[J]. Fine Chemicals (精细化工), 2021, 38(3): 559-565.
of Technology(Natural Edition) (南京工业大学学报:自然科学版),
[26] ZHANG Q (张强), MENG X D (孟祥东), SUN S H (孙守华), et al.
2014, 36(2): 1-6.
Industrial application of Amberlyst 35 resin catalyst in catalytic
[10] JIANG D M (蒋冬梅), WANG J (王军), ZHU H O (朱海欧), et al.
cracking light gasoline etherification unit[J]. Petroleum Processing
Hydroisomerization of n-heptane over heteropoly acid catalysts
and Petrochemicals (石油炼制与化工), 2015, 46(1): 28-33.
supported on modified USY zeolite[J]. Journal of Nanjing University
of Technology(Natural Edition) (南京工业大学学报:自然科学版), [27] PENG C F (彭晨凤), TONG S F (童三伏), TANG Y (唐渝), et al.
2003, 25(1): 36-40. Heteropoly acid-polymer composite membrane catalytic synthesis of
[11] ZHANG Q L (张全利), CHEN C L (陈长林). Stability study of ethyl acetate[J]. Petrochemical Technology (石油化工), 2004, 33(4):
platinum-loaded catalysts in magnesium metaphosphate modified 303-306.
tungsten-aluminum composite oxides[J]. Journal of Nanjing University [28] SHAO M (邵敏), MEI Y C (梅益成), LIU Z Y (刘志英), et al.
of Technology(Natural Edition) (南京工业大学学报:自然科学版), Preparation and photocatalytic properties of MFe 2O 4 (M=Zn, Co, Ni)/
2022, 44(1): 36-44. CdS nanospheresand[J]. Journal of Nanjing University of
[12] WANG Z H, CHEN Q W. Conversion of 5-hydroxymethylfurfural Technology(Natural Edition) (南京工业大学学报:自然科学版),
into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF- 2021, 43(6): 713-722.