Page 167 - 《精细化工》2022年第8期
P. 167

第 8 期              魏   玲,等:  碱土金属对 CuZrO 2 催化剂上乙醇制备酮类化合物性能的影响                           ·1667·


                                                        [7]
                 从图 6 中可以看出,相比较 K-CuZrO 2 催化剂 ,                [8]   LU G L (鲁桂林), QI H (齐航). Synthesis of cyclohexanol[J]. Journal
            碱土金属 Ba 改性的 CuZrO 2 催化剂稳定性明显提                          of Liaoning University of Technology (Natural Science Edition) (辽
                                                                   宁工业大学学报:  自然科学版), 2012, 32(6): 401-404.
            升,在 45 h 反应过程中,乙醇转化率略有下降,从                         [9]   YANG S X (杨绍祥), MU M (穆旻), HE X (何昕), et al. Study on
            最初的 99.0%下降到 95.9%,而丙酮和 2-戊酮选择                         the synthesis of flavoring agent 3-octanone[J]. China Condiment (中
                                                                   国调味品), 2014, 39(8): 93-95.
            性变化较小,分别在 10%和 20%左右,而庚酮选择                         [10]  WANG  Q N, WEN X F,  ZHOU B C,  et al. Direct, selective
            性略有下降,从最初的 19.8%下降到 16.6%。相比                           production of aromatic alcohols  from  ethanol  using  a tailored
                                       [7]
            较碱金属 K 改性 CuZrO 2 来说 ,在 45 h 反应过程                      bifunctional cobalt-hydroxyapatite catalyst[J]. ACS Catalysis, 2019,
                                                                   9: 7204-7216.
            中 Ba 的引入提高了 CuZrO 2 催化剂的稳定性。                       [11]  WU X Y, FANG  G Q,  TONG  Y Q,  et al.  Catalytic upgrading of
                                                                   ethanol to n-butanol: Progress in catalyst development[J]. ChemSusChem,
            3   结论                                                 2018, 11: 71-85.
                                                               [12]  WANG Q N,  ZHOU B  C, WENG X F,  et al. Hydroxyapatite
                 制备了不同碱土金属改性的 CuZrO 2 催化剂,并                        nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing
                                                                   high C 6~12 alcohol yield[J]. Chemical Communications,  2019,  55:
            考察了其在乙醇转化制备酮类化合物反应中的催化                                 10420-10423.
            性能。结果表明,不同碱土金属对催化剂比表面积                             [13]  CAIO  M, HONORATO C L,  GUIHERME  G,  et al. Synthesis of
                                                                   propene from ethanol: A mechanistic study[J]. ACS Catalysis, 2018,
            和结构影响不大,但是对催化剂还原性能、电子环
                                                                   8: 7667-7678.
            境、乙醇脱氢性能、乙醛脱附量及中强碱性影响较                             [14]  YU J L,  XIONG  Q, LIN X,  et al.  New ideas for development of
            大。Ba-CuZrO 2 催化剂中 Cu 结合能较高,有利于乙                        China's fuel ethanol industry in the new era[J]. China Brewing (中国
                                                                   酿造), 2021, 40(12): 17-21.
            醇 O—H 键断裂形成乙醛,且乙醛脱附量最大,催                           [15]  LAN R L (兰荣亮). Comparative analysis of production technology
            化剂表面中强碱性位碱性最强,有利于乙醇脱氢和                                 of coal-to-ethanol industry[J]. Shandong Chemical Industry (山东化
            乙醛缩合反应的进行,明显提高了酮类化合物选择                                 工), 2019, 48(7): 139-140.
                                                               [16]  LAN X L (兰小林), DUAN Z K (段正康), WANG Y S (王永胜), et
            性,相对于添加其他 3 种碱土金属元素,其乙醇转                               al. ZrO 2 with different crystal structure supported Cu catalysts for the
            化率和酮类化合物选择性分别为 98.1%和 51.1%,                           dehydrogenation of diethanolamine[J]. Fine Chemicals (精细化工),
                                                                   2019, 36(12): 2438-2446.
            且在 45 h 内具有较好的催化稳定性。
                                                               [17]  PAN W (潘文), WU K (吴铿), ZHAO Y (赵勇), et al. Effect of alkali
                                                                   metal on gas-solid reduction of iron oxide[J]. Iron and Steel (钢铁),
            参考文献:                                                  2013, 48(6): 7-14.
            [1]   LU J D (陆佳冬), ZHENG J C (郑金成), XIA T H (夏天昊), et al.   [18]  DASIREDDY V D B C, ŠTEFANČIČ N S, HUŠ M, et al. Effect of
                 Research progress on synthesis of methyl sobutyl ketone from   alkaline earth metal oxide (MO) Cu/MO/Al 2O 3 catalysts on methanol
                 acetone[J]. Zhejiang Chemical Industry (浙江化工), 2020, 51(6):   synthesis activity and selectivity  via CO 2 reduction[J].  Fuel, 2018,
                 15-20.                                            233: 103-112.
            [2]   HE D P, DING Y J, CHEN W M,  et al. One-step synthesis of   [19] YU X (于雪), CHEN J (陈洁), ZHANG H Q (张宏庆), et al. Study on
                 2-pentanone from ethanol over K-Pd/MnO x-ZrO 2-ZnO catalyst[J].   Cu/ZrO 2 catalysts modified by alkali metal and alkaline earth metal
                 Journal of Molecular Catalysis A: Chemical, 2005, 226: 89-92.   for ethanol one-step syntyesis ethyl acetate[J]. Applied Chemical
            [3]   SUBRAMANIAM S, GUO M F, BATHENA T, et al. Direct catalytic   Industry (应用化工), 2016, 45(10): 1938-1941.
                 conversion of ethanol to C 5+ ketones: Role of PdZn alloy on catalytic   [20]  DING M Y, TU J L, QIU M H, et al. Impact of potassium promoter
                 activity and stability[J]. Angewandte Chemie-International Edition,   on Cu-Fe based mixed alcohols synthesis catalyst[J]. Applied Energy,
                 2020, 59: 14550-14557.                            2015, 138: 584.
            [4]   WANG W,  CUI X, MA J T,  et al. Base-promoted ring  expansion   [21]  WANG Q  N (王庆楠),  ZHOU B C  (周百川), HE L (贺雷),  et al.
                 reactions for the construction of cycloheptanones through C—C bond   Catalytic  conversion of ethanol  to  oxygen-containing value-added
                 cleavage[J]. Chinese Journal of Organic Chemistry, 2021, 41: 1-10.   chemicals[J]. Journal of Dalian University of Technology: Natural
            [5]   CAO H Y (曹海泳), LIU W Q (刘文琴), WAN P N (万屏南), et al.   Science (大连理工大学学报:  自然科学版), 2020, 60(5): 465-476.
                 Application of dienones in  the construction  of complex organic   [22]  HANUKOVICH S, DANG A, CHRISTOPHER P. Influence of metal
                 compounds[J]. Fine Chemicals (精细化工), 2020, 37(8): 1540-1552.   oxide support acid sites on Cu-catalyzed nonoxidative dehydrogenation
            [6]   LUO H Z, GE  L B, ZHANG J S,  et al. Enhancing acetone   of ethanol to acetaldehyde[J]. ACS Catalysis, 2019, 9: 3537-3550.
                 biosynthesis and acetone-butanol-ethanol fermentation performance   [23]  SUSHKEVICH V  L, IVANOVA I I,  TAARNING E. Mechanistic
                 by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae   study of ethanol dehydrogenation over silica supported silver[J].
                 integrated with exogenous acetate addition[J]. Bioresource Technology,   ChemCatChem, 2013, 5: 2367-2373.
                 2016, 200: 111-120.                           [24]  CASSINELLI W H, MARTINS L, PASSOS A R, et al. Correlation
            [7]   WEI L, ZENG C  Y, XIE H J,  et al. Study on the formation of   between structural  and catalytic properties of copper supported on
                 2-pentanone from  ethanol over K-CuZrO 2 catalysts[J]. Journal of   porous alumina for the ethanol dehydrogenation reaction[J].
                 Fuel Chemistry and Technology, 2021, 49(1): 80-87.   ChemCatChem, 2015, 7: 1668-1677.
   162   163   164   165   166   167   168   169   170   171   172