Page 167 - 《精细化工》2022年第8期
P. 167
第 8 期 魏 玲,等: 碱土金属对 CuZrO 2 催化剂上乙醇制备酮类化合物性能的影响 ·1667·
[7]
从图 6 中可以看出,相比较 K-CuZrO 2 催化剂 , [8] LU G L (鲁桂林), QI H (齐航). Synthesis of cyclohexanol[J]. Journal
碱土金属 Ba 改性的 CuZrO 2 催化剂稳定性明显提 of Liaoning University of Technology (Natural Science Edition) (辽
宁工业大学学报: 自然科学版), 2012, 32(6): 401-404.
升,在 45 h 反应过程中,乙醇转化率略有下降,从 [9] YANG S X (杨绍祥), MU M (穆旻), HE X (何昕), et al. Study on
最初的 99.0%下降到 95.9%,而丙酮和 2-戊酮选择 the synthesis of flavoring agent 3-octanone[J]. China Condiment (中
国调味品), 2014, 39(8): 93-95.
性变化较小,分别在 10%和 20%左右,而庚酮选择 [10] WANG Q N, WEN X F, ZHOU B C, et al. Direct, selective
性略有下降,从最初的 19.8%下降到 16.6%。相比 production of aromatic alcohols from ethanol using a tailored
[7]
较碱金属 K 改性 CuZrO 2 来说 ,在 45 h 反应过程 bifunctional cobalt-hydroxyapatite catalyst[J]. ACS Catalysis, 2019,
9: 7204-7216.
中 Ba 的引入提高了 CuZrO 2 催化剂的稳定性。 [11] WU X Y, FANG G Q, TONG Y Q, et al. Catalytic upgrading of
ethanol to n-butanol: Progress in catalyst development[J]. ChemSusChem,
3 结论 2018, 11: 71-85.
[12] WANG Q N, ZHOU B C, WENG X F, et al. Hydroxyapatite
制备了不同碱土金属改性的 CuZrO 2 催化剂,并 nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing
high C 6~12 alcohol yield[J]. Chemical Communications, 2019, 55:
考察了其在乙醇转化制备酮类化合物反应中的催化 10420-10423.
性能。结果表明,不同碱土金属对催化剂比表面积 [13] CAIO M, HONORATO C L, GUIHERME G, et al. Synthesis of
propene from ethanol: A mechanistic study[J]. ACS Catalysis, 2018,
和结构影响不大,但是对催化剂还原性能、电子环
8: 7667-7678.
境、乙醇脱氢性能、乙醛脱附量及中强碱性影响较 [14] YU J L, XIONG Q, LIN X, et al. New ideas for development of
大。Ba-CuZrO 2 催化剂中 Cu 结合能较高,有利于乙 China's fuel ethanol industry in the new era[J]. China Brewing (中国
酿造), 2021, 40(12): 17-21.
醇 O—H 键断裂形成乙醛,且乙醛脱附量最大,催 [15] LAN R L (兰荣亮). Comparative analysis of production technology
化剂表面中强碱性位碱性最强,有利于乙醇脱氢和 of coal-to-ethanol industry[J]. Shandong Chemical Industry (山东化
乙醛缩合反应的进行,明显提高了酮类化合物选择 工), 2019, 48(7): 139-140.
[16] LAN X L (兰小林), DUAN Z K (段正康), WANG Y S (王永胜), et
性,相对于添加其他 3 种碱土金属元素,其乙醇转 al. ZrO 2 with different crystal structure supported Cu catalysts for the
化率和酮类化合物选择性分别为 98.1%和 51.1%, dehydrogenation of diethanolamine[J]. Fine Chemicals (精细化工),
2019, 36(12): 2438-2446.
且在 45 h 内具有较好的催化稳定性。
[17] PAN W (潘文), WU K (吴铿), ZHAO Y (赵勇), et al. Effect of alkali
metal on gas-solid reduction of iron oxide[J]. Iron and Steel (钢铁),
参考文献: 2013, 48(6): 7-14.
[1] LU J D (陆佳冬), ZHENG J C (郑金成), XIA T H (夏天昊), et al. [18] DASIREDDY V D B C, ŠTEFANČIČ N S, HUŠ M, et al. Effect of
Research progress on synthesis of methyl sobutyl ketone from alkaline earth metal oxide (MO) Cu/MO/Al 2O 3 catalysts on methanol
acetone[J]. Zhejiang Chemical Industry (浙江化工), 2020, 51(6): synthesis activity and selectivity via CO 2 reduction[J]. Fuel, 2018,
15-20. 233: 103-112.
[2] HE D P, DING Y J, CHEN W M, et al. One-step synthesis of [19] YU X (于雪), CHEN J (陈洁), ZHANG H Q (张宏庆), et al. Study on
2-pentanone from ethanol over K-Pd/MnO x-ZrO 2-ZnO catalyst[J]. Cu/ZrO 2 catalysts modified by alkali metal and alkaline earth metal
Journal of Molecular Catalysis A: Chemical, 2005, 226: 89-92. for ethanol one-step syntyesis ethyl acetate[J]. Applied Chemical
[3] SUBRAMANIAM S, GUO M F, BATHENA T, et al. Direct catalytic Industry (应用化工), 2016, 45(10): 1938-1941.
conversion of ethanol to C 5+ ketones: Role of PdZn alloy on catalytic [20] DING M Y, TU J L, QIU M H, et al. Impact of potassium promoter
activity and stability[J]. Angewandte Chemie-International Edition, on Cu-Fe based mixed alcohols synthesis catalyst[J]. Applied Energy,
2020, 59: 14550-14557. 2015, 138: 584.
[4] WANG W, CUI X, MA J T, et al. Base-promoted ring expansion [21] WANG Q N (王庆楠), ZHOU B C (周百川), HE L (贺雷), et al.
reactions for the construction of cycloheptanones through C—C bond Catalytic conversion of ethanol to oxygen-containing value-added
cleavage[J]. Chinese Journal of Organic Chemistry, 2021, 41: 1-10. chemicals[J]. Journal of Dalian University of Technology: Natural
[5] CAO H Y (曹海泳), LIU W Q (刘文琴), WAN P N (万屏南), et al. Science (大连理工大学学报: 自然科学版), 2020, 60(5): 465-476.
Application of dienones in the construction of complex organic [22] HANUKOVICH S, DANG A, CHRISTOPHER P. Influence of metal
compounds[J]. Fine Chemicals (精细化工), 2020, 37(8): 1540-1552. oxide support acid sites on Cu-catalyzed nonoxidative dehydrogenation
[6] LUO H Z, GE L B, ZHANG J S, et al. Enhancing acetone of ethanol to acetaldehyde[J]. ACS Catalysis, 2019, 9: 3537-3550.
biosynthesis and acetone-butanol-ethanol fermentation performance [23] SUSHKEVICH V L, IVANOVA I I, TAARNING E. Mechanistic
by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae study of ethanol dehydrogenation over silica supported silver[J].
integrated with exogenous acetate addition[J]. Bioresource Technology, ChemCatChem, 2013, 5: 2367-2373.
2016, 200: 111-120. [24] CASSINELLI W H, MARTINS L, PASSOS A R, et al. Correlation
[7] WEI L, ZENG C Y, XIE H J, et al. Study on the formation of between structural and catalytic properties of copper supported on
2-pentanone from ethanol over K-CuZrO 2 catalysts[J]. Journal of porous alumina for the ethanol dehydrogenation reaction[J].
Fuel Chemistry and Technology, 2021, 49(1): 80-87. ChemCatChem, 2015, 7: 1668-1677.