Page 181 - 《精细化工》2022年第8期
P. 181
第 8 期 王柏棋,等: 酯化大豆蛋白-壳聚糖复合物乳化性及抑菌性 ·1681·
以上实验结果表明,具有乳化性和抑菌性双重 [19] KEPPLER J K, MARTIN D, GARAMUS V M, et al. Functionality
of whey proteins covalently modified by allyl isothiocyanate. Part 1
功效的酯化大豆蛋白-壳聚糖复合物可以作为复合 physicochemical and antibacterial properties of native and modified
乳化剂应用于酸性乳液的制备中。一方面拓宽了大 whey proteins at pH 2 to 7[J]. Food Hydrocolloids, 2017, 65: 130-143.
[20] ESPINOSA-ANDREWS H, SANDOVAL-CASTILLA O, VAZQUEZ-
豆蛋白在食品领域的应用范围;另一方面为制备具 TORRES H, et al. Determination of the gum arabic-chitosan interactions
有高稳定性的酸性乳液奠定了理论基础。 by fourier transform infrared spectroscopy and characterization of the
microstructure and rheological features of their coacervates[J].
参考文献: Carbohydrate Polymers, 2010, 79 (3): 541-546.
[21] YUAN Y, KONG Z Y, SUN Y E, et al. Complex coacervation of soy
[1] MUJOO R, TRINH D T, NG P K W. Characterization of storage protein with chitosan: Constructing antioxidant microcapsule for
proteins in different soybean varieties and their relationship to tofu algal oil delivery[J]. LWT-Food Science and Technology, 2017, 75:
yield and texture [J]. Food Chemistry, 2003, 82(2): 265-273. 171-179.
[2] DING J (丁俭), SUI X N (隋晓楠), WANG J (王婧), et al. Effect of [22] HUANG G Q, SUN Y T, XIAO J X, et al. Complex coacervation of
ultrasonic treatment on stability of oil-in-water (O/W) emulsion soybean protein isolate and chitosan[J]. Food Chemistry, 2012, 135(2):
containing soybean protein isolate-chitosan complex[J]. Food Science 534-539.
(食品科学), 2018, 39(13): 74-80. [23] ZHANG W W (张唯唯), HE Z D (何振东), MA T Y (马天怡), et al.
[3] LIU Y C (刘永创), YANG X Q (杨晓泉), GUO J (郭健), et al. Extreme acid and alkaline pH-shifting processes improving the
Emulsifying properties of soy protein isolate at pH near the solubility and emulsifying properties of ginkgo seed protein isolate[J].
isoelectric point[J]. Modern Food Science and Technology (现代食 Fine Chemicals (精细化工), 2021, 38(6): 1204-1211.
品科技), 2015, 31(5): 84-89. [24] WANG S N, YANG J J, SHAO G Q, et al. pH-induced conformational
[4] SITOHY M, CHOBERT J M, HAERTLE T. Improvement of solubility changes and interfacial dilatational rheology of soy protein isolated/soy
and of emulsifying properties of milk proteins at acid pHs by hull polysaccharide complex and its effects on emulsion stabilization[J].
esterification[J]. Die Nahrung, 2001, 45(2): 87-93. Food Hydrocolloids, 2020, 109: 106075.
[5] WU X (吴溪), CHEN G (陈国), KAN C Y (阚成友). Research [25] MA T Y (马天怡), GUO F X (郭凤仙), HE Z D (何振东), et al.
progress in chemically-modified soy protein-based polymer materials[J]. L-Arginine/L-lysine ameliorating the emulsifying properties of soy
Modern Chemical Industry (现代化工), 2009, 29(10): 14-18. protein isolate[J]. Fine Chemicals (精细化工), 2022, 39(1): 150-157, 163.
[6] PINA-PEREZ M C, PEREZ M A F. Antimicrobial potential of [26] FAN X J (樊雪静). Study on emulsification and emulsification
legume extracts against foodborne pathogens: A review[J]. Trends in stability of soybean protein isolate-oligosaccharide complex system[D].
Food Science & Technology, 2018, 72: 114-124. Harbin: Northeast Agricultural University (东北农业大学), 2018.
[7] AGULLO E, RODRIGUEZ M S, RAMOS V, et al. Present and [27] LIANG S C, LIU Y B, XIANG J, et al. Fabrication of a new
future role of chitin and chitosan in food[J]. Macromolecular fluorescent polymeric nanoparticle containing naphthalimide and
Bioscience, 2003, 3(10): 521-530. investigation on its interaction with bovine serum albumin[J].
[8] MCCLEMENTS D J, JAFARI S M. Improving emulsion formation, Colloids and Surfaces B-Biointerfaces, 2014, 116: 206-210.
stability and performance using mixed emulsifiers: A review[J]. [28] LI F F, LI X H, HUANG K L, et al. Preparation and characterization
Advances in Colloid and Interface Science, 2018, 251: 55-79. of pickering emulsion stabilized by hordein-chitosan complex
[9] YUAN Y, WAN Z L, YIN S W, et al. Stability and antimicrobial particles[J]. Journal of Food Engineering, 2021, 292: 110275.
property of soy protein/chitosan mixed emulsion at acidic condition[J]. [29] KEERATI-U-RAI M, MIRIANI M, IAMETTI S, et al. Structural
Food & Function, 2013, 4(9): 1394-1401. changes of soy proteins at the oil-water interface studied by
[10] LIU G N, HU M, DU X Q, et al. Effects of succinylation and fluorescence spectroscopy[J]. Colloids & Surfaces B Biointerfaces,
chitosan assembly at the interface layer on the stability and digestion 2012, 93(1): 41-48.
characteristics of soy protein isolate-stabilized quercetin emulsions[J]. [30] LAWAL O S, ADEBOWALE K O, ADEBOWALE Y A. Functional
LWT-Food Science and Technology, 2021, 154: 112812. properties of native and chemically modified protein concentrates
[11] LI Y Y, JIN H, SUN X T, et al. Physicochemical properties and from bambarra groundnut[J]. Food Research International, 2007,
storage stability of food protein-stabilized nanoemulsions[J]. 40(8): 1003-1011.
Nanomaterials, 2018, 9(1): 25. [31] MA H B (马海宾), ZHAI C C (翟婵婵), WANG S K (王胜坤), et al.
[12] WANG Y T, WANG Z J, HANDA C, et al. Effects of ultrasound The antibacterial effect of different molecular weight of chitosan[J].
pre-treatment on the structure of β-conglycinin and glycinin and the Chinese Agricultural Science Bulletin (中国农学通报), 2014, 30(31):
antioxidant activity of their hydrolysates[J]. Food Chemistry, 2017, 267-271.
218: 165-172. [32] WANG H B, LU F, MA C Q, et al. Carbon dots with positive surface
[13] SITOHY M, OSMAN A. Antimicrobial activity of native and charge from tartaric acid and m-aminophenol for selective killing of
esterified legume proteins against gram-negative and gram-positive gram-positive bacteria[J]. Journal of Materials Chemistry B, 2021,
bacteria[J]. Food Chemistry, 2010, 120(1): 66-73. 9(1): 125-130.
[14] CHANG H W, TAN T B, TAN P Y, et al. Formation and [33] CHEN L C, CHIANG W D, CHEN W C, et al. Influence of alanine
characterization of thiol-modified fibrillated whey protein isolate uptake on staphylococcus aureus surface charge and its susceptibility
solution with enhanced functionalities[J]. Journal of Food Engineering, to two cationic antibacterial agents, nisin and low molecular weight
2017, 214: 277-286. chitosan[J]. Food Chemistry, 2012, 135(4): 2397-2403.
[15] SUN X T, JIN H, LI Y Y, et al. The molecular properties of peanut [34] LI Y (李莹), YE M (叶明). Bacteriostatic effect of several antibiotics
protein: Impact of temperature, relative humidity and vacuum packaging on escherichia coli and bacillus subtilis[J]. Journal of Quanzhou
during storage[J]. Molecules, 2018, 23(10): 2618. Normal University (泉州师范学院学报), 2017, 35(2): 35-39.
[16] LIU C, JIN H, YU Y, et al. The improvement of nanoemulsion [35] HAN C (韩畅), SU L J (苏林洁), LIU X (刘星), et al. Antibacterial
stability and antioxidation via protein-chlorogenic acid-dextran conjugates and antioxidant effects of different polar solvent extracts from
as emulsifiers[J]. Nanomaterials, 2020, 10(6): 1094. chicory stems[J]. Shizhen Traditional Chinese Medicine (时珍国医
[17] PEARCE K N, KINSELLA J E. Emulsifying properties of proteins: 国药), 2019, 30(8): 1825-1828.
Evaluation of a turbidimetric technique[J]. Journal of Agricultural [36] JI S L (吉尚雷), LIU X (刘欣), LIU L Y (刘立英), et al. Isolation,
and Food Chemistry, 1978, 26 (3): 716-723. identification and drug resistance analysis of salmonella from
[18] JIN H (金花), JIANG L Z (江连洲), FENG H Y (冯海莹), et al. broilers[J]. Morden Animal Husbandry (现代畜牧兽医), 2021, (6):
Effects of covalent and non-covalent interaction with chlorogenic 72-74.
acid on the stability and antioxidant activity of black soybean protein [37] BURGOS-DÍAZ C, WANDERSLEBEN T, MARQUES A M, et al.
isolate-stabilized nanoemulsion[J]. Food Science (食品科学), 2022, Multilayer emulsions stabilized by vegetable proteins and polysaccharides
43(4): 17-24. [J]. Current Opinion in Colloid & Interface Science, 2016, 25: 51-57.