Page 108 - 《精细化工》2022年第9期
P. 108

·1826·                            精细化工   FINE CHEMICALS                                 第 39 卷

            能密度。本文利用立构规整性聚合物的自结晶特点                                 Society, 1978, 100(4): 1298-1300.
                                                               [19]  HOU Y M (侯玉梅), HU Y (胡彦), SUN C R (孙长瑞), et al. Synthesis
            提高偶氮苯聚醚的储能密度的方式为聚合物储能材                                 and properties  of azobenzene-terminated PDMA photosensitive
            料的研究提供了新思路。                                            polymers[J]. Journal of Fuyang Normal University (Natural Science)
                                                                   (阜阳师范大学学报:  自然科学版), 2021, 38(3): 33-38.
                                                               [20]  CHEN S (陈思), XIE  K L  (谢孔良). Synthesis and photochromic
            参考文献:                                                  properties of azobenzene  compounds containing chiral  carbon[J].
            [1]   WANG H, HUANG J, SONG M J, et al. Simulation and experimental   Journal of Donghua University (Natural Science) (东华大学学报:
                 study on the optical performance of a fixed-focus fresnel lens solar   自然科学版), 2009, 35(5): 554-559.
                 concentrator using polar-axis tracking[J]. Energies, 2018, 11: 1-16.   [21]  HAN  G G D,  LI H S, GROSSMAN J C.  Optically-controlled
            [2]   ELLABBAN O, ABU-RUB H, BLAABJERG F. Renewable energy   long-term storage and release of thermal energy in phase-change
                 resources: Current status, future prospects and their enabling   materials[J]. Nature Communications, 2017, 8: 1-10.
                 technology[J]. Renewable  and Sustainable Energy Reviews, 2014,   [22]  YANG W X, FENG Y Y, SI Q Y, et al. Efficient cycling utilization of
                 39: 748-764.                                      solar-thermal  energy for thermochromic displays with controllable
            [3]   BORJESSON K, LENNARTSON A, MOTH-POULSEN K. Efficiency   heat output[J]. Journal of Materials Chemistry A, 2019, 7(1): 97-106.
                 limit of molecular solar  thermal energy collecting  devices[J].  ACS   [23]  QIU Q F, SHI  Y  R, HAN G G D.  Solar energy conversion and
                 Sustainable Chemistry Engineering, 2013, 1: 585-590.   storage by photoswitchable organic materials in solution, liquid,
            [4]   KUCHARSKI T J, TIAN Y C, AKBULATOV S,  et al. Chemical   solid, and changing phases[J]. Journal of Materials Chemistry C,
                 solutions for the closed-cycle storage of solar energy[J]. Energy   2021, 9(35): 11444-11463.
                 Environmental Science, 2011, 4: 4449-4472.    [24]  ZHOU  H W, XUE C G, WEIS P,  et al. Photoswitching of glass
            [5]   COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply   transition temperatures of azobenzene-containing polymers induces
                 and storage for the legacy and nonlegacy worlds[J]. Chemistry   reversible solid-to-liquid transitions[J]. Nature Chemistry, 2017, 9(2):
                 Review, 2010, 110(11): 6474-6502.                 145-151.
            [6]   GUR I, SAWYER K, PRASHER R. Searching for a better thermal   [25]  XU W C, SUN S D, WU S. Photoinduced reversible solid-to-liquid
                 battery[J]. Science, 2012, 335(6075): 1454-1455.   transitions for photoswitchable materials[J]. Angewandte Chemie
            [7]   JIANG Y (江艳). Preparation of photoisomerized materials based on   International Edition, 2019, 58(29): 9712-9740.
                 azobenzene  and their energy storage performance[D]. Guangzhou:   [26]  YUAN C R (袁晨瑞), XU W C (许文聪), LIANG S F (梁烁丰), et al.
                 Guangdong University of Technology (广东工业大学), 2020.   Polymers for photoinduced reversible solid-to-liquid transitions[J].
            [8]   CHO E  N, ZHITOMIRSKY D, HAN G G D,  et al. Molecularly   Acta Polymerica Sinica (高分子学报), 2020, 51(10): 1130-1139.
                 engineered azobenzene derivatives for high energy density solid-state   [27]  LI X L (李晓丽), ZHAO X L (赵霄雷), PENG J W (彭锦雯), et al.
                 solar thermal fuels[J]. ACS Applied Materials & Interfaces, 2017, 9:   Synthesis and photoresponse properties of photoinduced-solid-liquid
                 8679-8687.                                        transition of azopolymers[J]. Polymer Materials Science  and
            [9]   DONG L Q, FENG Y Y, WANG L, et al. Azobenzene-based solar   Engineering (高分子材料科学与工程), 2021, 37(6): 43-38.
                 thermal fuels: Design, properties, and applications[J]. Chemical Society   [28]  SAYDJARI A K,  WEI S P, WU S. Spanning the solar spectrum:
                 Reviews, 2018, 47: 7339-7368.                     Azopolymer solar  thermal fuels for simultaneous UV and visible
            [10]  JEONG S P, RENNA L A, BOYLE C J, et al. High energy density in   light storage[J]. Advanced Energy Materials, 2016, 7(3): 1-4.
                 azobenzene-based materials for photo-thermal batteries via controlled   [29]  CHILDERS M I, LONGO J M, VAN ZEE N J, et al. Stereoselective
                 polymer architecture and polymer-solvent interactions[J]. Scientific   epoxide polymerization and copolymerization[J]. Chemical Reviews,
                 Reports, 2017, 7: 1-12.                           2014, 114(16): 8129-8152.
            [11]  PHILIPPOPOULOS C, ECONOMOU D, ECONOMOU C,  et al.   [30]  HERZBERGER J, NIEDERER K, POHLIT H, et al. Polymerization
                 Norbornadiene quadricyclane system in the photochemical conversion   of ethylene oxide, propylene oxide, and  other alkylene oxides:
                 and storage of solar-energy[J]. Industrial & Engineering Chemistry   Synthesis, novel polymer architectures, and bioconjugation[J].
                 Product Research and Development, 1983, 22(4): 627-633.     Chemical Reviews, 2016, 116(4): 2170-2243.
            [12]  KUISMA M J, LUNDIN A M, MOTH-POULSEN  K,  et al.   [31]  LONGO  J  M, DICICCIO A  M, COATES G W.  Poly(propylene
                 Comparative ab-initio study of substituted norbornadiene-quadricyclane   succinate): A new polymer stereocomplex[J]. Journal of the American
                 compounds for solar thermal storage[J]. Journal of Physical Chemistry   Chemical Society, 2014, 136(45): 15897-15900.
                 C, 2016, 120(7): 3635-3645.                   [32]  LI J, LIU Y, REN W M, et al. Asymmetric alternating copolymerization
            [13]  GRAY V, LENNARTSON A, RATANALERT P,  et al. Diaryl-   of meso-epoxides and cyclic  anhydrides: Efficient access to
                 substituted norbornadienes with red-shifted absorption for molecular   enantiopure polyesters[J]. Journal of the American Chemical Society,
                 solar thermal energy storage[J]. Chemical Communications, 2014,   2016, 138(36): 11493-11496.
                 50(40): 5330-5332.                            [33]  LI J, REN B H, CHEN S  Y,  et al. Development of  highly
            [14]  FU L X (符林霞), FENG Y Y (冯奕钰), FENG W (封伟). Photo-   enantioselective catalysts for asymmetric copolymerization of meso-
                 thermal storage and release of an azobenzene-grafted polynorbornene   epoxides and cyclic anhydrides:  Subtle modification resulting  in
                 film[J]. Acta Polymerica Sinica (高分子学报), 2019, 50(12): 1272-   superior enantioselectivity[J]. ACS Catalysis, 2019, 9(3): 1915-1922.
                 1279.                                         [34]  LI J, REN B  H,  WAN  Z Q,  et al. Enantioselective resolution
            [15]  KANAI  Y, SRINIVASAN V, MEIER S K,  et al. Mechanism of   copolymerization of racemic  epoxides and anhydrides: Efficient
                 thermal  reversal  of  the  (fulvalene)tetracarbonyldiruthenium   approach for stereoregular polyesters and chiral epoxides[J]. Journal
                 photoisomerization: Toward molecular solar-thermal energy storage[J].   of the American Chemical Society, 2019, 141(22): 8937-8942.
                 Angewandte Chemie International Edition, 2010, 49(47): 8926-8929.     [35]  LI J, WANG M W, LIU  Y,  et al. Photoinduced reversible
            [16]  BOESE R, CAMMACK J K, MATZGER A J, et al. Photochemistry   semicrystalline-to-amorphous state transitions of stereoregular
                 of (fulvalene)tetracarbonyldiruthenium and its derivatives: Efficient   azopolyesters[J]. Angewandte Chemie International Edition, 2021,
                 light energy storage devices[J]. Journal of the American Chemical   60(33): 17898-17903.
                 Society, 1997, 119(29): 6757-6773.            [36]  HIRAHATA W, THOMAS R M, LOBKOVSKY E  B,  et al.
            [17]  HUANG T Y (黄天宇), WANG W H (王万辉), YU X Q (于晓强).   Enantioselective polymerization of epoxides: A highly active and
                 Visible light promoting the synthesis of symmetric  aromatic  azo   selective catalyst for the preparation of stereoregular polyethers and
                 compounds[J]. Fine Chemicals (精细化工), 2020, 3(7): 1507-1512.   enantiopure epoxides[J]. Journal of the American Chemical Society,
            [18]  ADAMSON A W, VOGLER A,  KUNKELY H,  et al. Photo-   2008, 130(52): 17658-17659.
                 calorimetry-enthalpies of photolysis  of  trans-azobenzene,  trans-   [37]  BARRETT C J, MAMIYA J I, YAGER K G, et al. Photo-mechanical
                 ferrioxalate and  trans-cobaltioxalate ions, chromium hexacarbonyl,   effects in azobenzene-containing soft materials[J]. Soft Matter, 2007,
                 and dirhenium decarbonyl[J]. Journal of the American Chemical   3(10): 1249-1261.
   103   104   105   106   107   108   109   110   111   112   113