Page 108 - 《精细化工》2022年第9期
P. 108
·1826· 精细化工 FINE CHEMICALS 第 39 卷
能密度。本文利用立构规整性聚合物的自结晶特点 Society, 1978, 100(4): 1298-1300.
[19] HOU Y M (侯玉梅), HU Y (胡彦), SUN C R (孙长瑞), et al. Synthesis
提高偶氮苯聚醚的储能密度的方式为聚合物储能材 and properties of azobenzene-terminated PDMA photosensitive
料的研究提供了新思路。 polymers[J]. Journal of Fuyang Normal University (Natural Science)
(阜阳师范大学学报: 自然科学版), 2021, 38(3): 33-38.
[20] CHEN S (陈思), XIE K L (谢孔良). Synthesis and photochromic
参考文献: properties of azobenzene compounds containing chiral carbon[J].
[1] WANG H, HUANG J, SONG M J, et al. Simulation and experimental Journal of Donghua University (Natural Science) (东华大学学报:
study on the optical performance of a fixed-focus fresnel lens solar 自然科学版), 2009, 35(5): 554-559.
concentrator using polar-axis tracking[J]. Energies, 2018, 11: 1-16. [21] HAN G G D, LI H S, GROSSMAN J C. Optically-controlled
[2] ELLABBAN O, ABU-RUB H, BLAABJERG F. Renewable energy long-term storage and release of thermal energy in phase-change
resources: Current status, future prospects and their enabling materials[J]. Nature Communications, 2017, 8: 1-10.
technology[J]. Renewable and Sustainable Energy Reviews, 2014, [22] YANG W X, FENG Y Y, SI Q Y, et al. Efficient cycling utilization of
39: 748-764. solar-thermal energy for thermochromic displays with controllable
[3] BORJESSON K, LENNARTSON A, MOTH-POULSEN K. Efficiency heat output[J]. Journal of Materials Chemistry A, 2019, 7(1): 97-106.
limit of molecular solar thermal energy collecting devices[J]. ACS [23] QIU Q F, SHI Y R, HAN G G D. Solar energy conversion and
Sustainable Chemistry Engineering, 2013, 1: 585-590. storage by photoswitchable organic materials in solution, liquid,
[4] KUCHARSKI T J, TIAN Y C, AKBULATOV S, et al. Chemical solid, and changing phases[J]. Journal of Materials Chemistry C,
solutions for the closed-cycle storage of solar energy[J]. Energy 2021, 9(35): 11444-11463.
Environmental Science, 2011, 4: 4449-4472. [24] ZHOU H W, XUE C G, WEIS P, et al. Photoswitching of glass
[5] COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply transition temperatures of azobenzene-containing polymers induces
and storage for the legacy and nonlegacy worlds[J]. Chemistry reversible solid-to-liquid transitions[J]. Nature Chemistry, 2017, 9(2):
Review, 2010, 110(11): 6474-6502. 145-151.
[6] GUR I, SAWYER K, PRASHER R. Searching for a better thermal [25] XU W C, SUN S D, WU S. Photoinduced reversible solid-to-liquid
battery[J]. Science, 2012, 335(6075): 1454-1455. transitions for photoswitchable materials[J]. Angewandte Chemie
[7] JIANG Y (江艳). Preparation of photoisomerized materials based on International Edition, 2019, 58(29): 9712-9740.
azobenzene and their energy storage performance[D]. Guangzhou: [26] YUAN C R (袁晨瑞), XU W C (许文聪), LIANG S F (梁烁丰), et al.
Guangdong University of Technology (广东工业大学), 2020. Polymers for photoinduced reversible solid-to-liquid transitions[J].
[8] CHO E N, ZHITOMIRSKY D, HAN G G D, et al. Molecularly Acta Polymerica Sinica (高分子学报), 2020, 51(10): 1130-1139.
engineered azobenzene derivatives for high energy density solid-state [27] LI X L (李晓丽), ZHAO X L (赵霄雷), PENG J W (彭锦雯), et al.
solar thermal fuels[J]. ACS Applied Materials & Interfaces, 2017, 9: Synthesis and photoresponse properties of photoinduced-solid-liquid
8679-8687. transition of azopolymers[J]. Polymer Materials Science and
[9] DONG L Q, FENG Y Y, WANG L, et al. Azobenzene-based solar Engineering (高分子材料科学与工程), 2021, 37(6): 43-38.
thermal fuels: Design, properties, and applications[J]. Chemical Society [28] SAYDJARI A K, WEI S P, WU S. Spanning the solar spectrum:
Reviews, 2018, 47: 7339-7368. Azopolymer solar thermal fuels for simultaneous UV and visible
[10] JEONG S P, RENNA L A, BOYLE C J, et al. High energy density in light storage[J]. Advanced Energy Materials, 2016, 7(3): 1-4.
azobenzene-based materials for photo-thermal batteries via controlled [29] CHILDERS M I, LONGO J M, VAN ZEE N J, et al. Stereoselective
polymer architecture and polymer-solvent interactions[J]. Scientific epoxide polymerization and copolymerization[J]. Chemical Reviews,
Reports, 2017, 7: 1-12. 2014, 114(16): 8129-8152.
[11] PHILIPPOPOULOS C, ECONOMOU D, ECONOMOU C, et al. [30] HERZBERGER J, NIEDERER K, POHLIT H, et al. Polymerization
Norbornadiene quadricyclane system in the photochemical conversion of ethylene oxide, propylene oxide, and other alkylene oxides:
and storage of solar-energy[J]. Industrial & Engineering Chemistry Synthesis, novel polymer architectures, and bioconjugation[J].
Product Research and Development, 1983, 22(4): 627-633. Chemical Reviews, 2016, 116(4): 2170-2243.
[12] KUISMA M J, LUNDIN A M, MOTH-POULSEN K, et al. [31] LONGO J M, DICICCIO A M, COATES G W. Poly(propylene
Comparative ab-initio study of substituted norbornadiene-quadricyclane succinate): A new polymer stereocomplex[J]. Journal of the American
compounds for solar thermal storage[J]. Journal of Physical Chemistry Chemical Society, 2014, 136(45): 15897-15900.
C, 2016, 120(7): 3635-3645. [32] LI J, LIU Y, REN W M, et al. Asymmetric alternating copolymerization
[13] GRAY V, LENNARTSON A, RATANALERT P, et al. Diaryl- of meso-epoxides and cyclic anhydrides: Efficient access to
substituted norbornadienes with red-shifted absorption for molecular enantiopure polyesters[J]. Journal of the American Chemical Society,
solar thermal energy storage[J]. Chemical Communications, 2014, 2016, 138(36): 11493-11496.
50(40): 5330-5332. [33] LI J, REN B H, CHEN S Y, et al. Development of highly
[14] FU L X (符林霞), FENG Y Y (冯奕钰), FENG W (封伟). Photo- enantioselective catalysts for asymmetric copolymerization of meso-
thermal storage and release of an azobenzene-grafted polynorbornene epoxides and cyclic anhydrides: Subtle modification resulting in
film[J]. Acta Polymerica Sinica (高分子学报), 2019, 50(12): 1272- superior enantioselectivity[J]. ACS Catalysis, 2019, 9(3): 1915-1922.
1279. [34] LI J, REN B H, WAN Z Q, et al. Enantioselective resolution
[15] KANAI Y, SRINIVASAN V, MEIER S K, et al. Mechanism of copolymerization of racemic epoxides and anhydrides: Efficient
thermal reversal of the (fulvalene)tetracarbonyldiruthenium approach for stereoregular polyesters and chiral epoxides[J]. Journal
photoisomerization: Toward molecular solar-thermal energy storage[J]. of the American Chemical Society, 2019, 141(22): 8937-8942.
Angewandte Chemie International Edition, 2010, 49(47): 8926-8929. [35] LI J, WANG M W, LIU Y, et al. Photoinduced reversible
[16] BOESE R, CAMMACK J K, MATZGER A J, et al. Photochemistry semicrystalline-to-amorphous state transitions of stereoregular
of (fulvalene)tetracarbonyldiruthenium and its derivatives: Efficient azopolyesters[J]. Angewandte Chemie International Edition, 2021,
light energy storage devices[J]. Journal of the American Chemical 60(33): 17898-17903.
Society, 1997, 119(29): 6757-6773. [36] HIRAHATA W, THOMAS R M, LOBKOVSKY E B, et al.
[17] HUANG T Y (黄天宇), WANG W H (王万辉), YU X Q (于晓强). Enantioselective polymerization of epoxides: A highly active and
Visible light promoting the synthesis of symmetric aromatic azo selective catalyst for the preparation of stereoregular polyethers and
compounds[J]. Fine Chemicals (精细化工), 2020, 3(7): 1507-1512. enantiopure epoxides[J]. Journal of the American Chemical Society,
[18] ADAMSON A W, VOGLER A, KUNKELY H, et al. Photo- 2008, 130(52): 17658-17659.
calorimetry-enthalpies of photolysis of trans-azobenzene, trans- [37] BARRETT C J, MAMIYA J I, YAGER K G, et al. Photo-mechanical
ferrioxalate and trans-cobaltioxalate ions, chromium hexacarbonyl, effects in azobenzene-containing soft materials[J]. Soft Matter, 2007,
and dirhenium decarbonyl[J]. Journal of the American Chemical 3(10): 1249-1261.