Page 153 - 《精细化工》2023年第1期
P. 153
第 1 期 张向阳,等: β-芳基-δ-氨基酸衍生物的新合成方法 ·145·
径 1)。主要的副反应是中间体 B 与水分子反应生成 [9] SUN X S, WANG X H, TAO H Y, et al. Catalytic asymmetric
synthesis of quaternary trifluoromethyl α- to ε-amino acid derivatives
苯,即水解苯硼酸产生苯(路径 2)。 via umpolung allylation/2-aza-cope rearrangement[J]. Chemical
Science, 2020, 11(40): 10984-10990.
3 结论 [10] JENSEN A A, MADSEN B E, KROGSGAARD-LARSEN P, et al.
Pharmacological characterization of homobaclofen on wild type and
mutant GABA B1b receptors coexpressed with the GABA B2 receptor[J].
本文报道了[Rh(COD)Cl] 2 催化的芳基硼酸与 5- European Journal of Pharmacology, 2001, 417(3): 177-180.
[11] KARLA R, EBERT B, THORKILDSEN C, et al. Synthesis and
邻苯二甲酰亚胺基-2-戊烯酸甲酯的 Michael 加成反 pharmacology of the baclofen homologues 5-amino-4-
应构建一类 β-芳基-δ-氨基酸衍生物,即 5-邻苯二甲 (4-chlorophenyl)pentanoic acid and the R- and S-enantiomers of 5-
amino-3-(4-chlorophenyl)pentanoic acid[J]. Journal of Medicinal
酰亚胺基-3-芳基戊酸甲酯(Ⅲ)。最优的反应条件 Chemistry, 1999, 42(11): 2053-2059.
为:芳基硼酸Ⅰa(0.4 mmol)、5-邻苯二甲酰亚胺基 [12] ATTIA M I, HERDEIS C, BRÄUNER-OSBORNE H. GABA B-
agonistic activity of certain baclofen homologues[J]. Molecules,
-2-戊烯酸甲酯(0.2 mmol)、KOH 水溶液(0.1 mL, 2013, 18: 10266-10284.
1.0 mol/L)、催化剂[Rh(COD)Cl] 2 (0.005 mmol)、 [13] HE Z T, WEI Y B, YU H J, et al. Rhodium/diene-catalyzed
asymmetric arylation of N-Boc-protected α,β-unsaturated δ-lactam
溶剂 1, 4-二氧六环(1.0 mL),100 ℃下搅拌反应 with arylboronic acids: Enantioselective synthesis of 4-aryl-2-
piperidinones[J]. Tetrahedron, 2012, 68: 9186-9191.
10 h。制备了 9 个含不同芳基的 δ-氨基酸衍生物, [14] MORIGAKI A, TANAKA T, MIYABE T, et al. Rhodium(Ⅰ)-
其产率都达到了 95%以上。此外,以 5-邻苯二甲酰 catalyzed 1,4-conjugate arylation toward β-fluoroalkylated electron-
deficient alkenes: A new entry to a onstruction of a tertiary carbon
亚胺基-3-对氯苯基戊酸甲酯(Ⅲb)为原料,以 83% center possessing a fluoroalkyl group[J]. Organic & Biomolecular
的总收率制备了盐酸高巴氯芬,为此类药物活性分 Chemistry, 2013, 11(4): 586-595.
[15] XIU S D (修世东). The research of rhodium-catalyzedcyaloaddition
子库的建立奠定了基础。 of N-sulfonyl-1,2,3-triazoles and α,β-unsaturated aldehydes[D].
Hangzhou: Zhejiang Sci-Tech University (浙江理工大学), 2015.
参考文献: [16] CLÉMENT C, SAMIR B. Rhodium(Ⅲ) catalyzed regioselective and
stereospecific allylic arylation in water by β-fluorine elimination of
[1] TRABOCCHI A, GUARNA F, GUARNA A. γ- and δ-Amino acids: the allylic fluoride: Toward the synthesis of Z-alkenyl-unsaturated
Synthetic strategies and relevant applications[J]. Current Organic amides[J]. Organic Letters, 2020, 22(6): 2359-2364.
Chemistry, 2005, 9(12): 1127-1153. [17] NISHIMURA T, SAWANO T, TOKUJI S, et al. Rhodium-catalyzed
[2] CHEERLAVANCHA R, LAWER A, CAGNES M, et al. Sequential asymmetric conjugate alkynylation of nitroalkenes[J]. Chemical
deoxyfluorination approach for the synthesis of protected α, β, Communications, 2010, 46: 6837-6839.
γ-trifluor-δ-amino acids[J]. Organic Letters, 2013, 15(21): 5562-5565. [18] HU F D, JIA J, LI X M, et al. Enantioselective hydroarylation or
[3] LI G J (李贵军), Studies on the asymmetric synthesis of δ-amino hydroalkenylation of benzo[b]thiophene 1,1-dioxides with organoboranes[J].
acid derivatives and their application in the synthesis of spirocyclic Organic Letters, 2021, 23(3): 896-901.
oxindoles[D]. Kuming :Yunnan University (云南大学), 2017. [19] LEFEVRE N, BRAYER J L, FOLLÉAS B, et al. Chiral α-amino
[4] AITKEN L S, HAMMOND L E, SUNDARAM R, et al. Asymmetric phosphonates via rhodium-catalyzed asymmetric 1,4-addition reactions[J].
cyclopropanation of conjugated cyanosulfones using a novel cupreine Organic Letters, 2013, 15(16): 4274-4276.
organocatalyst: Rapid access to δ-amino acids[J]. Chemical [20] PAN Y H, LU X S, QIU H Y, et al. Highly enantioselective synthesis
Communications, 2015, 51(70): 13558-13561. of monofluoroalkenes by rhodium-catalyzed asymmetric arylation/
[5] LI G J, XU X L, TIAN H C, et al. Asymmetric synthesis of δ-amino defluorination of allyl difluorides[J]. Organic Letters, 2020, 22(21):
acid derivatives via diastereoselective vinylogous Mannich reactions 8413-8418.
between N-tert-butanesulfinyl imines and dioxinone-derived lithium [21] GUO Z R ( 郭宗儒 ). Aprost, a new drug transformed from
dienolate[J]. RSC Advances, 2017, 7(80): 50822-50827. thalidomide[J]. Acta Pharmaceutica Sinica (药学学报), 2015, 50(7):
[6] ZACHARIE B, ABBOTT S D, BAIGENT C, et al. An efficient 916-918.
two-step preparation of α-, β-, γ- or δ-amino acids from 2-hydroxy
pyrazines, pyrimidines or pyridines respectively[J]. European Journal [22] DAILLER D, ROCABOY R, BAUDOIN O. Synthesis of β-lactams
3
by palladium(0)-catalyzed C(sp )—H carbamoylation[J]. Angewandte
of Organic Chemistry, 2018, 46: 6486-6493.
[7] SCHROEDER C E, NEUENSWANDER S A, YAO T, et al. One-pot, Chemie International Edition, 2017, 56(25): 7218-7222. 13
regiospecific assembly of (E)-benzamidines from δ- and γ-amino [23] KATSUMI I, SHINJI T, TOSHIHIRO I, et al. Synthesis of 5-[4,5- C 2]-
13
acids via an intramolecular aminoquinazolinone rearrangement[J]. and 5-[1,5- C 2]aminolevulinic acid[J]. Journal of Labelled Compounds
Organic & Biomolecular Chemistry, 2016, 14(16): 3950-3955. and Radiopharmaceuticals, 2002, 45(7): 569-576.
[8] STENDALLR T, COBBA J A. Syntheses and applications of [24] HAYASHI T. Rhodium-catalyzed asymmetric 1,4-addition of organoboronic
enantiopure δ-amino acids and their precursors[J]. Tetrahedron, 2018, acids and their derivatives to electron deficient olefins[J]. Synlett, 2001,
74: 4917-4925. (S I): 879-887.
(上接第 49 页) transparent polyimides with low CTE and high tensile strength[J].
[16] WAHAB M A, KARIM M R, AIJAZ M O, et al. A study on the Polymer Science, Series B, 2020, 62(6): 756-764.
interfacial compatibility, microstructure and physico-chemical [19] CHOI W T, KIM D W, JEONG Y T, et al. Preparation of colorless
properties of polyimide/organically modified silica nanocomposite polyimide hybrid films with enhanced optical, chemical and thermal
membrane[J]. Polymers, 2021, 13(8): 1328. resistance[J]. Molecular Crystals and Liquid Crystals, 2019, 679(1):
[17] LIAN M, ZHENG F, LU X M, et al. Tuning the heat resistance 87-94.
properties of polyimides by intermolecular interaction strengthening [20] MA L R, WANG Y X, WANG Y Y, et al. Polyimide nanocomposites
for flexible substrate application[J]. Polymer, 2019, 173: 205-214. with reduced graphene oxide for enhanced thermal conductivity and
[18] ZHU Z, XU Y, YE Z F, et al. Synthesis and properties of colorless tensile strength[J]. Materials Research Express, 2020, 6(12): 125346.