Page 152 - 《精细化工)》2023年第10期
P. 152

·2230·                            精细化工   FINE CHEMICALS                                 第 40 卷

            表 4   不同摩擦次数对超疏水涂层 C 18 -NH 2 /570@SiO 2 /         观影响甚微,C 18 -NH 2 /570@SiO 2 /DE51-0.8 透光率达
                   DE51-0.8 耐酸碱性能的影响                           到 91.98%,并且赋予了其优异的附着力、铅笔硬度、
            Table 4    Effect of different friction times on acid and alkali   自清洁以及耐酸碱性能;
                    resistance of superhydrophobic coating C 18 -NH 2 /
                    570@SiO 2 /DE51-0.8                           (3)制备的 C 18 -NH 2 /570@SiO 2 /DE51-0.8 具有
                                      摩擦次数/次                   良好的耐摩擦性。当摩擦次数达到 1500 次时仍处于

                               0      500   1000    1500       超疏水状态,透光率仅下降 0.87%,接触角仅下降
               耐酸性/168 h     无异常     变色     失光      无异常        0.4°,经过 168 h 质量分数为 5% H 2 SO 4 和 NaOH 水
               耐碱性/168 h     无异常     失光     变色      无异常        溶液浸泡后,仍具有良好的耐酸碱性能。

                                                                   本文为耐摩超疏水材料的研究提供了参考。

                                                               参考文献:
                                                               [1]   JISHNU A, JAYAN J S, SARITHA A,  et al. Superhydrophobic
                                                                   graphene-based materials with  self-cleaning and anticorrosion
                                                                   performance: An appraisal of neoteric advancement and future
                                                                   perspectives[J]. Colloids and Surfaces A: Physicochemical and
                                                                   Engineering Aspects, 2020, 606: 125395.
                                                               [2]   ZHANG  C J, LIANG F H, ZHANG W,  et al. Constructing
                                                                   mechanochemical durable and self-healing superhydrophobic
                                                                   surfaces[J]. ACS Omega, 2020, 5(2): 986-994.
                                                               [3]   RAMAN A, JAYAN J S, DEERAJ B D S,  et al. Electrospun
                                                                   nanofibers as effective superhydrophobic surfaces: A brief review[J].
                                                                   Surfaces and Interfaces, 2021, 24: 101140.
                                                               [4]   SHADMANI S. Super-hydrophobicity through coatings prepared by
                                                                   chemical methods[M]. Oxford: Superhydrophobic Surfaces-Fabrications

                                                                   to Practical Applications, IntechOpen, 2020: 79-120.
            a、b—分别放置在质量分数为 5%的 H 2SO 4 水溶液和 NaOH 水溶            [5]   YANG H  T, DENG Y L. Preparation and physical properties of
                                                                   superhydrophobic papers[J]. Journal of Colloid and Interface
            液中 168 h;c、d—摩擦 1500 次后放置在质量分数为 5%的 H 2SO 4
                                                                   Science, 2008, 325(2): 588-593.
            水溶液和 NaOH 水溶液中 168 h                               [6]   DARBAND G B,  ALIOFKHAZRAEI M, KHORSAND S, et al.
            图 13   超疏水涂层 C 18 -NH 2 /570@SiO 2 /DE51-0.8 的耐酸       Science and engineering  of superhydrophobic surfaces: Review of
                   碱测试照片                                           corrosion resistance, chemical and mechanical stability[J]. Arabian
            Fig. 13    Photos of acid and alkali resistance test of   [7]   Journal of Chemistry, 2020, 13(1): 1763-1802.
                                                                   NISHIMOTO S, BHUSHAN  B.  Bioinspired self-cleaning surfaces
                     superhydrophobic coating C 18 -NH 2 /570@SiO 2 /   with super-hydrophobicity, superoleophobicity, and superhydrophilicity[J].
                     DE51-0.8                                      RSC Advances, 2013, 3(3): 671-690.
                                                               [8]   XIANG  T F,  HAN Y, GUO  Z Q,  et al. Fabrication of inherent
                 根据图 13 和表 4 可知,由质量分数为 0.8%的                       anticorrosion  superhydrophobic surfaces on metals[J]. ACS
                                                                   Sustainable Chemistry & Engineering, 2018, 6(4): 5598-5606.
            C 18 -NH 2 /570@SiO 2 丙酮分散液制得涂层出现变色、               [9]   NOSONOVSKY M, BHUSHAN B. Superhydrophobic surfaces and
            失光现象,这是由于 C 18 -NH 2 /570@SiO 2 纳米粒子喷                  emerging applications: Non-adhesion, energy, green engineering[J].
                                                                   Current Opinion in Colloid & Interface Science, 2009, 14(4): 270-
            涂过厚在酸碱溶液中脱落导致的。不同摩擦次数对                                 280.
            所制备的超疏水涂层耐酸碱性能影响甚微,在摩擦                             [10]  LATTHE  S S. Superhydrophobic surfaces for oil-water separation[M].
                                                                   England: Superhydrophobic Polymer Coatings, Elsevier, 2019: 339-
            1000 次时涂层短暂失去超疏水性能,出现失光、变                              356.
            色现象。超疏水涂层在摩擦 1500 次时,又恢复至原                         [11]  WANG M C, WANG W W, LI S  Q,  et al. A fly ash-derived
                                                                   polybenzoxazine/zeolite A bilayer coating with excellent super-
            始的耐酸碱性能。                                               hydrophobicity and corrosion resistance[J]. Progress in Organic
                                                                   Coatings, 2022, 171: 107043.
            3   结论                                             [12]  LI Y S, REN M, LV P F,  et al.  A robust and flexible bulk
                                                                   superhydrophobic material from silicone rubber/silica gel prepared
                                                                   by thiol-ene photopolymerization[J]. Journal of Materials Chemistry
                 采用层层组装法通过 C 18 -NH 2 、TEOS、KH-570                 A, 2019, 7(12): 7242-7255.
            合成出长链烷基改性纳米粒 C 18-NH 2/570@SiO 2,将其                [13]  LU C X, GAO  Y, YU S J,  et al. Non-fluorinated flexible
                                                                   superhydrophobic surface with excellent mechanical durability and
            引入到有机硅改性环氧树脂中,制备了耐摩擦性能优                                self-cleaning performance[J]. ACS Applied Materials & Interfaces,
            异的超疏水环氧树脂涂层 C 18-NH 2/570@SiO 2/DE51,                  2022, 14(3): 4750-4758.
                                                               [14]  WANG P, WEI W D, LI Z Q, et al. A superhydrophobic fluorinated
            并得到以下结论:                                               PDMS composite as a  wearable  strain sensor with excellent
                (1)喷涂 C 18-NH 2/570@SiO 2 丙酮分散液的质量                 mechanical robustness and liquid impalement resistance[J]. Journal
                                                                   of Materials Chemistry A, 2020, 8(6): 3509-3516.
            分数为 0.8%时,制备的环氧树脂复合涂层具备超疏水                         [15]  PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic
            性,接触角达到 150.6°±0.6°,滚动角达到 7.8°±0.4°;                   coatings with mechanochemical robustness and liquid impalement
                                                                   resistance[J]. Nature Materials, 2018, 17(4): 355-360.
                (2)C 18 -NH 2 /570@SiO 2 的加入对复合涂层的外                                          (下转第 2248 页)
   147   148   149   150   151   152   153   154   155   156   157