Page 174 - 《精细化工》2023年第11期
P. 174

·2486·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 分别用 CZ 和 DFZ-2-10%进行共催化裂解实验,                      production of benzene, toluene, and  xylenes  via methanol: Process
            连续投料 10 次考察催化剂的稳定性(反应温度为                               synthesis and deterministic global optimization[J]. Energy & Fuels,
                                                                   2016, 30(6): 4970-4998.
            550  ℃,催化剂不变,连续投料 10 次,反应结束后                       [2]   JIANG J, FENG X, YANG M, et al. Comparative technoeconomic
            积炭测试与上文相同),结果如图 8 所示。可以看出,                             analysis and life cycle  assessment of aromatics production from
                                                                   methanol and naphtha[J]. Journal of Cleaner Production, 2020, 277:
            DFZ-2-10%的 BTEX 产率总是高于 CZ,10 次进料
                                                                   123525.
            后,CZ 的 BTEX 产率为 11.00%,相比于第 1 次的                   [3]   LI T, SHOINKHOROVA T, GASCON J, et al. Aromatics production
            19.58%下降 8.58%,DFZ-2-10%的 BTEX 产率为                     via methanol-mediated transformation routes[J]. ACS Catalysis, 2021,
                                                                   11(13): 7780-7819.
            15.45%,相比于第 1 次的 22.94%下降 7.49%,这表
                                                               [4]   ZHANG L, ZHANG S, HU X, et al. Progress in application of the
            明 DFZ-2-10%的催化性能优于 CZ。DFZ-2-10%的积                      pyrolytic lignin from pyrolysis of biomass[J]. Chemical Engineering
            炭率为 8.80%,CZ 的积炭率为 10.90%,这说明                          Journal, 2021, 419: 129560.
                                                               [5]   XU G H (徐国皓), XU H S (徐华胜),  YU J P (余金鹏),  et al.
            DFZ-2-10% 的抗积炭能力更强。总体来说,
                                                                   Preparation of hierarchical HZSM-5 zeolites and their catalytic
            DFZ-2-10%的催化稳定性高于 CZ,抗积炭能力更                            performance in propane dehydrogenation[J]. Fine Chemicals (精细化
            强,展现出良好的应用前景。                                          工), 2019, 36(5): 892-897, 912.
                                                               [6]   MENG L, MEZARI B, GOESTEN M G, et al. One-step synthesis of
                                                                   hierarchical ZSM-5 using cetyltrimethylammonium as mesoporogen
                                                                   and structure-directing agent[J]. Chemistry of Materials, 2017, 29(9):
                                                                   4091-4096.
                                                               [7]   KHOSHBIN R, KARIMZADEH R. Synthesis of mesoporous ZSM-5
                                                                   from rice husk ash with ultrasound assisted alkali-treatment method
                                                                   used in catalytic cracking  of light naphtha[J]. Advanced Powder
                                                                   Technology, 2017, 28(8): 1888-1897.
                                                               [8]   WANG X F (王晓峰), FU H B (伏洪兵), GU H S (顾恒硕), et al.
                                                                   Synthesis of red mud-based ZSM-5 zeolite and its catalytic cracking
                                                                   performance[J]. Applied Chemical Industry (应用化工), 2022, 51(11):
                                                                   3178-3184.
                                                               [9]   LI F, WANG X, GU H, et al. Catalytic co-cracking of biomass and

                                                                   waste plastics with sawdust mediated ZSM-5 synthesized via activating
                        图 8   催化剂循环使用实验                            gel process[J]. Fuel, 2023, 332: 126141.
                      Fig. 8    Catalyst cycling experiment    [10]  WANG Z, BURRA K G, LEI T, et al. Co-pyrolysis of waste plastic

                                                                   and solid biomass for synergistic  production of biofuels  and
                                                                   chemicals-A review[J]. Progress in Energy and Combustion Science,
            3   结论                                                 2021, 84: 100899.
                                                               [11]  ZHANG  M, LIU  X,  YAN Z. Soluble starch as  in-situ template  to
                (1)以工业废弃物硅灰为原料,淀粉为模板剂                              synthesize ZSM-5  zeolite with intracrystal  mesopores[J]. Materials
            通过两步法(在第 2 步中添加 10%的淀粉)成功合                             Letters, 2016, 164: 543-546.
                                                               [12]  ZENG W (曾炜).  Solid acid and base catalysts for conversion of
            成出晶粒约为 3  μm、酸量为 1.15 mmol/g、孔径在
                                                                   glucose to platform chemicals in hot compressed water[D]. Hangzhou:
            3.5~5.0 nm 之间的介孔 ZSM-5 分子筛。                            Zhejiang University (浙江大学), 2010.
                (2)单独催化裂解 LDPE 时,DFZ-2-10%对                    [13]  LYU J J (吕江江), HUANG X  L (黄星亮), ZHAO L L  (赵蕾蕾),
                                                                   et al. Effects of acid-alkali treatment on properties and reactivity of
            BTEX 的选择性为 90.70%高于 CZ(84.17%);单独
                                                                   ZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology (燃料
            催化裂解 AL 时,DFZ-2-10%对 BTEX 的选择性为                        化学学报), 2016, 44(6): 732-737.
            53.78%,比 CZ 高 21.92%,同时积炭率和固体残渣                    [14]  GOU J, WANG Z, LI C, et al. The effects of ZSM-5 mesoporosity
                                                                   and morphology on the catalytic fast pyrolysis of furan[J]. Green
            率均低于 CZ。                                               Chemistry, 2017, 19(15): 3549-3557.
                (3)催化共裂解 LDPE 与 AL 时(质量比为 1∶                   [15]  CHEN W, LU J, ZHANG C, et al. Aromatic hydrocarbons production
            1),DFZ-2-10%对 BTEX 的选择性为 91.86%,比单                     and synergistic effect of plastics and biomass  via one-pot catalytic
                                                                   co-hydropyrolysis on HZSM-5[J]. Journal of Analytical and Applied
            独裂解 LDPE(90.70%)和 AL(53.78%)分别高                        Pyrolysis, 2020, 147: 104800.
            1.16%和 38.08%,BTEX 产率为 22.94%,比理论                  [16]  CHE Q, YI W, LIU Y, et al. Effect of mesopores in ZSM-5 on the
            BTEX 产率(18.18%)高 4.76%,这说明将两种原                         catalytic conversion of acetic acid, furfural, and guaiacol[J]. Energy
                                                                   & Fuels, 2021, 35(7): 6022-6029.
            料共催化裂解能提高 BTEX 的产量,DFZ-2-10%积                      [17]  NISHU, LI Y, LIU R. Catalytic pyrolysis of lignin over ZSM-5, alkali,
            炭率为 2.70%,固体残渣率为 2.73%,比 CZ 更低,                        and metal  modified ZSM-5 at different temperatures to produce
            这表明 DFZ-2-10%具有良好的抗积炭能力,展示出                            hydrocarbons[J]. Journal of the Energy Institute, 2022, 101: 111-121.
                                                               [18]  ROCNIK T, LIKOZAR  B, JASIUKAITYTE  G E,  et al. Catalytic
            良好的应用前景。                                               lignin valorisation by depolymerisation, hydrogenation, demethylation
                                                                   and hydrodeoxygenation: mechanism, chemical reaction kinetics and
            参考文献:                                                  transport phenomena[J]. Chemical Engineering  Journal, 2022, 448:
            [1]   NIZIOLEK A M,  ONEL O, GUZMAN Y A, et  al. Biomass-based   137309.
   169   170   171   172   173   174   175   176   177   178   179