Page 174 - 《精细化工》2023年第11期
P. 174
·2486· 精细化工 FINE CHEMICALS 第 40 卷
分别用 CZ 和 DFZ-2-10%进行共催化裂解实验, production of benzene, toluene, and xylenes via methanol: Process
连续投料 10 次考察催化剂的稳定性(反应温度为 synthesis and deterministic global optimization[J]. Energy & Fuels,
2016, 30(6): 4970-4998.
550 ℃,催化剂不变,连续投料 10 次,反应结束后 [2] JIANG J, FENG X, YANG M, et al. Comparative technoeconomic
积炭测试与上文相同),结果如图 8 所示。可以看出, analysis and life cycle assessment of aromatics production from
methanol and naphtha[J]. Journal of Cleaner Production, 2020, 277:
DFZ-2-10%的 BTEX 产率总是高于 CZ,10 次进料
123525.
后,CZ 的 BTEX 产率为 11.00%,相比于第 1 次的 [3] LI T, SHOINKHOROVA T, GASCON J, et al. Aromatics production
19.58%下降 8.58%,DFZ-2-10%的 BTEX 产率为 via methanol-mediated transformation routes[J]. ACS Catalysis, 2021,
11(13): 7780-7819.
15.45%,相比于第 1 次的 22.94%下降 7.49%,这表
[4] ZHANG L, ZHANG S, HU X, et al. Progress in application of the
明 DFZ-2-10%的催化性能优于 CZ。DFZ-2-10%的积 pyrolytic lignin from pyrolysis of biomass[J]. Chemical Engineering
炭率为 8.80%,CZ 的积炭率为 10.90%,这说明 Journal, 2021, 419: 129560.
[5] XU G H (徐国皓), XU H S (徐华胜), YU J P (余金鹏), et al.
DFZ-2-10% 的抗积炭能力更强。总体来说,
Preparation of hierarchical HZSM-5 zeolites and their catalytic
DFZ-2-10%的催化稳定性高于 CZ,抗积炭能力更 performance in propane dehydrogenation[J]. Fine Chemicals (精细化
强,展现出良好的应用前景。 工), 2019, 36(5): 892-897, 912.
[6] MENG L, MEZARI B, GOESTEN M G, et al. One-step synthesis of
hierarchical ZSM-5 using cetyltrimethylammonium as mesoporogen
and structure-directing agent[J]. Chemistry of Materials, 2017, 29(9):
4091-4096.
[7] KHOSHBIN R, KARIMZADEH R. Synthesis of mesoporous ZSM-5
from rice husk ash with ultrasound assisted alkali-treatment method
used in catalytic cracking of light naphtha[J]. Advanced Powder
Technology, 2017, 28(8): 1888-1897.
[8] WANG X F (王晓峰), FU H B (伏洪兵), GU H S (顾恒硕), et al.
Synthesis of red mud-based ZSM-5 zeolite and its catalytic cracking
performance[J]. Applied Chemical Industry (应用化工), 2022, 51(11):
3178-3184.
[9] LI F, WANG X, GU H, et al. Catalytic co-cracking of biomass and
waste plastics with sawdust mediated ZSM-5 synthesized via activating
图 8 催化剂循环使用实验 gel process[J]. Fuel, 2023, 332: 126141.
Fig. 8 Catalyst cycling experiment [10] WANG Z, BURRA K G, LEI T, et al. Co-pyrolysis of waste plastic
and solid biomass for synergistic production of biofuels and
chemicals-A review[J]. Progress in Energy and Combustion Science,
3 结论 2021, 84: 100899.
[11] ZHANG M, LIU X, YAN Z. Soluble starch as in-situ template to
(1)以工业废弃物硅灰为原料,淀粉为模板剂 synthesize ZSM-5 zeolite with intracrystal mesopores[J]. Materials
通过两步法(在第 2 步中添加 10%的淀粉)成功合 Letters, 2016, 164: 543-546.
[12] ZENG W (曾炜). Solid acid and base catalysts for conversion of
成出晶粒约为 3 μm、酸量为 1.15 mmol/g、孔径在
glucose to platform chemicals in hot compressed water[D]. Hangzhou:
3.5~5.0 nm 之间的介孔 ZSM-5 分子筛。 Zhejiang University (浙江大学), 2010.
(2)单独催化裂解 LDPE 时,DFZ-2-10%对 [13] LYU J J (吕江江), HUANG X L (黄星亮), ZHAO L L (赵蕾蕾),
et al. Effects of acid-alkali treatment on properties and reactivity of
BTEX 的选择性为 90.70%高于 CZ(84.17%);单独
ZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology (燃料
催化裂解 AL 时,DFZ-2-10%对 BTEX 的选择性为 化学学报), 2016, 44(6): 732-737.
53.78%,比 CZ 高 21.92%,同时积炭率和固体残渣 [14] GOU J, WANG Z, LI C, et al. The effects of ZSM-5 mesoporosity
and morphology on the catalytic fast pyrolysis of furan[J]. Green
率均低于 CZ。 Chemistry, 2017, 19(15): 3549-3557.
(3)催化共裂解 LDPE 与 AL 时(质量比为 1∶ [15] CHEN W, LU J, ZHANG C, et al. Aromatic hydrocarbons production
1),DFZ-2-10%对 BTEX 的选择性为 91.86%,比单 and synergistic effect of plastics and biomass via one-pot catalytic
co-hydropyrolysis on HZSM-5[J]. Journal of Analytical and Applied
独裂解 LDPE(90.70%)和 AL(53.78%)分别高 Pyrolysis, 2020, 147: 104800.
1.16%和 38.08%,BTEX 产率为 22.94%,比理论 [16] CHE Q, YI W, LIU Y, et al. Effect of mesopores in ZSM-5 on the
BTEX 产率(18.18%)高 4.76%,这说明将两种原 catalytic conversion of acetic acid, furfural, and guaiacol[J]. Energy
& Fuels, 2021, 35(7): 6022-6029.
料共催化裂解能提高 BTEX 的产量,DFZ-2-10%积 [17] NISHU, LI Y, LIU R. Catalytic pyrolysis of lignin over ZSM-5, alkali,
炭率为 2.70%,固体残渣率为 2.73%,比 CZ 更低, and metal modified ZSM-5 at different temperatures to produce
这表明 DFZ-2-10%具有良好的抗积炭能力,展示出 hydrocarbons[J]. Journal of the Energy Institute, 2022, 101: 111-121.
[18] ROCNIK T, LIKOZAR B, JASIUKAITYTE G E, et al. Catalytic
良好的应用前景。 lignin valorisation by depolymerisation, hydrogenation, demethylation
and hydrodeoxygenation: mechanism, chemical reaction kinetics and
参考文献: transport phenomena[J]. Chemical Engineering Journal, 2022, 448:
[1] NIZIOLEK A M, ONEL O, GUZMAN Y A, et al. Biomass-based 137309.