Page 108 - 《精细化工》2023年第12期
P. 108

第 40 卷第 12 期                            精   细   化   工                                 Vol.40, No.12
             2 023 年 12 月                            FINE CHEMICALS                                 Dec.  2023


              功能材料
                            高稳定性细菌纤维素/碳纳米管/MnO                                              2


                                          复合超级电容器电极



                                                *
                            刘亚丽,张素风 ,呼旭旭,李   磊,李   楠,刘   叶
                                   (陕西科技大学  轻工科学与工程学院,陕西  西安  710021)

                 摘要:首先,利用细菌纤维素(BC)的两亲分子结构和纳米尺寸效应实现了水中羟基化多壁碳纳米管(简称
                 MWCNT)的有效分散;接着,利用 BC 的三维多孔及柔性支架结构和 MWCNT 的优良导电性,采用真空抽滤

                 辅助自组装构建了 BC/MWCNT 复合膜;然后,在 BC/MWCNT 复合膜上电沉积 MnO 2 构建了 BC/MWCNT/MnO 2
                 复合膜电极。采用 SEM、TEM、XRD、Raman 光谱及 XPS 对 BC/MWCNT 复合膜及 BC/MWCNT/MnO 2 复合膜
                 电极进行了表征,测试了其力学性能及电化学性能。结果表明,BC 和 MWCNT 通过氢键紧密结合协同赋予复
                 合膜优良的电导率和力学性能。BC/MWCNT 复合膜的多孔结构、电解质吸收特性及蜂窝状活性 MnO 2 纳米片的
                                                                  2
                 桥连结构赋予其出色的电化学性能和循环稳定性,在 1 mA/cm 的电流密度下,BC/MWCNT/MnO 2 -20(电沉积
                                                                2
                                                                                    2
                 时间 20 min)的面积比电容和质量比电容分别达到 1.17 F/cm 和 200 F/g,在 20 mA/cm 的电流密度下进行 10000
                 次循环后,其比电容保留率为 96%。BC/MWCNT/MnO 2 复合膜电极的制备简便且成本低廉,在开发柔性储能器
                 件方面具有应用潜力。
                 关键词:细菌纤维素;多壁碳纳米管;二氧化锰;膜电极;电化学性能;高稳定性;功能材料
                 中图分类号:TQ630;TM53      文献标识码:A      文章编号:1003-5214 (2023) 12-2650-09



                           High stability bacterial cellulose/carbon nanotube/MnO 2
                                       composite supercapacitor electrodes


                                                        *
                                 LIU Yali, ZHANG Sufeng , HU Xuxu, LI Lei, LI Nan, LIU Ye
                 (College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science  &  Technology, Xi'an
                 710021, Shaanxi, China)

                 Abstract:  Effective dispersion  of hydroxylated multi-walled carbon nanotubes (MWCNT for  short) in
                 water was achieved utilizing the amphiphilic molecular structure and nano-size effect of bacterial cellulose
                 (BC). BC/MWCNT composite films were then constructed by vacuum filtration assisted self-assembly based
                 on three-dimensional porous and flexible scaffold structure of BC and excellent conductivity of MWCNT.
                 Finally, novel BC/MWCNT/MnO 2 composite film electrodes were constructed  by electrodeposition  of
                 MnO 2  on the BC/MWCNT composite films. BC/MWCNT composite film and BC/MWCNT/MnO 2
                 composite film electrodes  were characterized by SEM, TEM, XRD, Raman spectrum and  XPS, and
                 evaluated for their mechanical and electrochemical properties. The results showed that BC and MWCNT
                 were closely bonded through hydrogen bonds to confer excellent electrical conductivity and mechanical
                 properties. The porous structure of BC/MWCNT composite film, the electrolyte absorption characteristics
                 and the bridge structure of honeycomb active MnO 2 nanosheets endowed it excellent electrochemical
                                                                                       2
                 performance and remarkable cycling stability. At a current  density of 1 mA/cm , the area  specific
                 capacitance and mass specific capacitances of BC/MWCNT/MnO 2-20 (electrodeposition time of 20 min)

                 收稿日期:2023-02-14;  定用日期:2023-06-05; DOI: 10.13550/j.jxhg.20230099
                 基金项目:陕西省重点产业创新链项目(2020ZDLGY11-03);生物质化学与材料国际联合研究中心项目(2018GHJD-19);陕西省秦
                 创“科学家+工程师”队伍建设项目(2022KXJ-135)
                 作者简介:刘亚丽(1990—),女,博士生,E-mail:BS1901005@sust.edu.cn。联系人:张素风(1972—),女,教授,E-mail:
                 zhangsufeng@sust.edu.cn。
   103   104   105   106   107   108   109   110   111   112   113