Page 123 - 《精细化工》2023年第12期
P. 123
第 12 期 王 乾,等: 基于末端脱氧核苷酸转移酶协同 G-四链体核酶的恩诺沙星检测方法 ·2665·
enhanced two-dimensional black phosphorus photothermal-sensing transferase and T7 exonuclease-aided amplification strategy for
materials[J]. Biosensors and Bioelectronics, 2019, 133: 223-229. ultrasensitive detection of uracil-DNA glycosylase[J]. Analytical
[8] PAN M F, GU Y, ZHANG M Y, et al. Reproducible molecularly Chemistry, 2018, 90(14): 8629-8634.
imprinted QCM sensor for accurate, stable, and sensitive detection of [23] WANG L, DENG Y, HUANG Y, et al. Template-free multiple signal
enrofloxacin residue in animal-derived foods[J]. Food Analytical amplification for highly sensitive detection of cancer cell-derived
Methods, 2017, 11(2): 495-503. exosomes[J]. Chemical Communications, 2021, 57(68): 8508-8511.
[9] CHAI F L, WANG D, ZHU L N, et al. Dual gold nanoparticle/ [24] MA X M, SHI L, XIE H J, et al. Sensitive detection of fat mass and
chemiluminescent immunoassay for sensitive detection of multiple obesity-associated protein based on terminal deoxynucleotidyl
analytes[J]. Analytical Chemistry, 2022, 94(17): 6628-6634. transferase-mediated signal amplification[J]. Microchemical Journal,
[10] LI H J, WANG M C, SHEN X X, et al. Rapid and sensitive detection 2022, 183: 108131.
of enrofloxacin hydrochloride based on surface enhanced raman [25] WANG H X, WANG M Y, LIU J Z, et al. An ultrasensitive label-free
scattering-active flexible membrane assemblies of Ag nanoparticles photoelectrochemical aptasensor based on terminal deoxynucleotidyl
[J]. Journal of Environmental Management, 2019, 249: 109387. transferase amplification and catalytic reaction of G-quadruplex/
[11] WANG M, CUI H F, HONG N, et al. A reagentless triplex DNA hemin[J]. Analytica Chimica Acta, 2022, 1211: 339912.
junctions-based electrochemical DNA sensor using signal amplification [26] SHI K, DOU B T, YANG J M, et al. Target-triggered catalytic hairpin
strategy of CHA and tetraferrocene[J]. Sensors and Actuators: B. assembly and TdT-catalyzed DNA polymerization for amplified
Chemical, 2022, 358: 131496. electronic detection of thrombin in human serums[J]. Biosensors and
[12] LIU S F, LIN Y, WANG L, et al. ExonucleaseⅢ-aided autocatalytic Bioelectronics, 2017, 87: 495-500.
DNA biosensing platform for immobilization-free and ultrasensitive [27] LIU Z L, LUO X Y, LI Z, et al. Enzyme-activated G-quadruplex
electrochemical detection of nucleic acid and protein[J]. Analytical synthesis for in situ label-free detection and bioimaging of cell
Chemistry, 2014, 86: 4008-4015. apoptosis[J]. Analytical Chemistry, 2017, 89(3): 1892-1899.
[13] GALLEGOS-TABANICO A, JIMENEZ-CANALE J, HERNANDEZ- [28] CAO Y W, LI W J, PEI R J. Exploring the catalytic mechanism of
LEON S G, et al. Development of an electrochemical sensor multivalent G-quadruplex/hemin DNAzymes by modulating the
conjugated with molecularly imprinted polymers for the detection of position and spatial orientation of connected G-quadruplexes[J].
enrofloxacin[J]. Chemosensors, 2022, 10(11): 448-458. Analytica Chimica Acta, 2022, 1221: 340105.
[14] ZHANG B Z, LV L N, MA X Y, et al. Au@ZnNi-MOF labeled [29] MA J P, CHEN G Z, BAI W S, et al. Amplified electrochemical
electrochemical aptasensor for detection of enrofloxacin based on hydrogen peroxide sensing based on Cu-porphyrin metal-organic
AuPt@h-CeO 2/MoS 2 and DNAzyme-driven DNA walker triple framework nanofilm and G-quadruplex-hemin DNAzyme[J]. ACS
amplification signal strategy[J]. Biosensors and Bioelectronics, 2022, Applied Materials & Interfaces, 2020, 12(52): 58105-58112.
210: 114296. [30] WU H, WU J, WANG H Y, et al. Sensitive and label-free
[15] ZHAO T T, CHEN Q, WEN Y L, et al. A competitive colorimetric chemiluminescence detection of malathion using exonuclease-
aptasensor for simple and sensitive detection of kanamycin based on assisted dual signal amplification and G-quadruplex/hemin DNAzyme
terminal deoxynucleotidyl transferase-mediated signal amplification [J]. Journal of Hazardous Materials, 2021, 411: 124784.
strategy[J]. Food Chemistry, 2022, 377: 132072. [31] LIU S W, DING J W, QIN W. Dual-analyte chronopotentiometric
[16] DENG Y, PENG Y, WANG L, et al. Target-triggered cascade signal aptasensing platform based on a G-quadruplex/hemin DNAzyme and
amplification for sensitive electrochemical detection of SARS-CoV-2 logic gate operations[J]. Analytical Chemistry, 2019, 91(4):
with clinical application[J]. Analytica Chimica Acta, 2022, 1208: 3170-3176.
339846. [32] MI L, SUN Y D, SHI L, et al. Hemin-bridged MOF interface with
[17] WANG L, PAN Y H, LIU Y F, et al. Fabrication of an aptamer-coated double amplification of G-quadruplex payload and DNAzyme catalysis:
liposome complex for the detection and profiling of exosomes based Ultrasensitive lasting chemiluminescence MicroRNA imaging[J].
on terminal deoxynucleotidyl transferase-mediated signal amplification ACS Applied Materials & Interfaces, 2020, 12(7): 7879-7887.
[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 322-329. [33] SHA J Y, LIN H, TIMIRA V, et al. The construction and application
[18] LI Y T, TANG D H, ZHU L, et al. Label-free detection of miRNA of aptamer to simultaneous identification of enrofloxacin and
cancer markers based on terminal deoxynucleotidyl transferase- ciprofloxacin residues in fish[J]. Food Analytical Methods, 2021,
induced copper nanoclusters[J]. Analytical Biochemistry, 2019, 585: 14(5): 957-967.
113346. [34] DOLATI S, RAMEZANI M, NABAVINIA M S, et al. Selection of
[19] ABNOUS K, DANESH N M, NAMEGHI M A, et al. An specific aptamer against enrofloxacin and fabrication of graphene
ultrasensitive electrochemical sensing method for detection of oxide based label-free fluorescent assay[J]. Analytical Biochemistry,
microcystin-LR based on infinity-shaped DNA structure using double 2018, 549: 124-129.
aptamer and terminal deoxynucleotidyl transferase[J]. Biosensors and [35] LU S Y, WANG S L, WU P, et al. A composite prepared from
Bioelectronics, 2019, 144: 111674. covalent organic framework and gold nanoparticles for the
[20] CHEN J L, XU J R, WAN T, et al. High-sensitive detection of electrochemical determination of enrofloxacin[J]. Advanced Powder
small-cell lung cancer cells based on terminal deoxynucleotidyl Technology, 2021, 32(6): 2106-2115.
transferase-mediated extension polymerization aptamer probe[J]. [36] NENG J, WANG Y Z, ZHANG Y L, et al. MIPs-SERS sensor based
ACS Biomaterials Science & Engineering, 2021, 7(3): 1169-1180. on Ag NPs film for selective detection of enrofloxacin in food[J].
[21] ZHANG X L, ZHENG C, DING L, et al. CRISPR-Cas12a coupled Biosensors, 2023, 13(3): 330-345.
with terminal deoxynucleotidyl transferase mediated isothermal [37] GUO X J, ZHANG L Z, WANG Z W, et al. Fluorescent carbon dots
amplification for sensitive detection of polynucleotide kinase based sensing system for detection of enrofloxacin in water solutions
activity[J]. Sensors and Actuators: B. Chemical, 2021, 330: 129317. [J]. Spectrochimica Acta Part A, Molecular and Biomolecular
[22] DU Y C, CUI Y X, LI X Y, et al. Terminal deoxynucleotidyl Spectroscopy, 2019, 219: 15-22.