Page 123 - 《精细化工》2023年第12期
P. 123

第 12 期          王   乾,等:  基于末端脱氧核苷酸转移酶协同 G-四链体核酶的恩诺沙星检测方法                               ·2665·


                 enhanced two-dimensional black phosphorus photothermal-sensing   transferase and T7 exonuclease-aided amplification  strategy for
                 materials[J]. Biosensors and Bioelectronics, 2019, 133: 223-229.   ultrasensitive detection of uracil-DNA glycosylase[J].  Analytical
            [8]   PAN M F, GU Y,  ZHANG M Y,  et al. Reproducible molecularly   Chemistry, 2018, 90(14): 8629-8634.
                 imprinted QCM sensor for accurate, stable, and sensitive detection of   [23]  WANG L, DENG Y, HUANG Y, et al. Template-free multiple signal
                 enrofloxacin residue in  animal-derived foods[J]. Food  Analytical   amplification for highly sensitive detection of cancer cell-derived
                 Methods, 2017, 11(2): 495-503.                    exosomes[J]. Chemical Communications, 2021, 57(68): 8508-8511.
            [9]   CHAI F L, WANG D,  ZHU L N,  et al. Dual gold nanoparticle/   [24]  MA X M, SHI L, XIE H J, et al. Sensitive detection of fat mass and
                 chemiluminescent immunoassay for sensitive detection of multiple   obesity-associated  protein  based on terminal deoxynucleotidyl
                 analytes[J]. Analytical Chemistry, 2022, 94(17): 6628-6634.   transferase-mediated signal amplification[J]. Microchemical Journal,
            [10]  LI H J, WANG M C, SHEN X X, et al. Rapid and sensitive detection   2022, 183: 108131.
                 of enrofloxacin  hydrochloride based  on surface enhanced raman   [25]  WANG H X, WANG M Y, LIU J Z, et al. An ultrasensitive label-free
                 scattering-active flexible membrane assemblies of Ag nanoparticles   photoelectrochemical aptasensor based on terminal deoxynucleotidyl
                 [J]. Journal of Environmental Management, 2019, 249: 109387.   transferase amplification and catalytic reaction of G-quadruplex/
            [11]  WANG M, CUI H F, HONG N,  et al.  A reagentless triplex DNA   hemin[J]. Analytica Chimica Acta, 2022, 1211: 339912.
                 junctions-based electrochemical DNA sensor  using  signal amplification   [26]  SHI K, DOU B T, YANG J M, et al. Target-triggered catalytic hairpin
                 strategy of CHA and tetraferrocene[J]. Sensors and Actuators: B.   assembly  and TdT-catalyzed DNA polymerization for  amplified
                 Chemical, 2022, 358: 131496.                      electronic detection of thrombin in human serums[J]. Biosensors and
            [12]  LIU S F, LIN Y, WANG L, et al. ExonucleaseⅢ-aided autocatalytic   Bioelectronics, 2017, 87: 495-500.
                 DNA biosensing platform for immobilization-free and ultrasensitive   [27]  LIU Z L, LUO X Y, LI Z,  et al. Enzyme-activated G-quadruplex
                 electrochemical detection of nucleic acid and protein[J]. Analytical   synthesis for  in situ label-free detection and bioimaging of cell
                 Chemistry, 2014, 86: 4008-4015.                   apoptosis[J]. Analytical Chemistry, 2017, 89(3): 1892-1899.
            [13]  GALLEGOS-TABANICO A, JIMENEZ-CANALE J, HERNANDEZ-   [28]  CAO Y W, LI W J, PEI R J. Exploring the catalytic mechanism of
                 LEON S G,  et al. Development of an electrochemical sensor   multivalent G-quadruplex/hemin DNAzymes by  modulating the
                 conjugated with molecularly imprinted polymers for the detection of   position and spatial orientation of connected G-quadruplexes[J].
                 enrofloxacin[J]. Chemosensors, 2022, 10(11): 448-458.   Analytica Chimica Acta, 2022, 1221: 340105.
            [14]  ZHANG B Z, LV  L N, MA X Y,  et al. Au@ZnNi-MOF labeled   [29]  MA J P,  CHEN G Z, BAI W S,  et al. Amplified electrochemical
                 electrochemical  aptasensor for  detection of enrofloxacin based on   hydrogen peroxide sensing based on Cu-porphyrin metal-organic
                 AuPt@h-CeO 2/MoS 2 and DNAzyme-driven DNA walker triple   framework nanofilm and G-quadruplex-hemin DNAzyme[J]. ACS
                 amplification signal strategy[J]. Biosensors and Bioelectronics, 2022,   Applied Materials & Interfaces, 2020, 12(52): 58105-58112.
                 210: 114296.                                  [30]  WU H,  WU J,  WANG H Y,  et al. Sensitive and label-free
            [15]  ZHAO T T, CHEN Q, WEN Y L, et al. A competitive colorimetric   chemiluminescence detection of malathion using exonuclease-
                 aptasensor for simple and sensitive detection of kanamycin based on   assisted dual signal amplification and G-quadruplex/hemin DNAzyme
                 terminal deoxynucleotidyl transferase-mediated signal amplification   [J]. Journal of Hazardous Materials, 2021, 411: 124784.
                 strategy[J]. Food Chemistry, 2022, 377: 132072.   [31]  LIU S W, DING J W, QIN W. Dual-analyte chronopotentiometric
            [16]  DENG Y, PENG Y, WANG L, et al. Target-triggered cascade signal   aptasensing platform based on a G-quadruplex/hemin DNAzyme and
                 amplification for sensitive electrochemical detection of SARS-CoV-2   logic gate operations[J]. Analytical Chemistry, 2019, 91(4):
                 with clinical application[J]. Analytica Chimica Acta, 2022, 1208:   3170-3176.
                 339846.                                       [32]  MI L, SUN Y D, SHI L, et al. Hemin-bridged MOF interface with
            [17]  WANG L, PAN Y H, LIU Y F, et al. Fabrication of an aptamer-coated   double amplification of G-quadruplex payload and DNAzyme catalysis:
                 liposome complex for the detection and profiling of exosomes based   Ultrasensitive lasting chemiluminescence MicroRNA imaging[J].
                 on terminal deoxynucleotidyl transferase-mediated signal amplification   ACS Applied Materials & Interfaces, 2020, 12(7): 7879-7887.
                 [J]. ACS Applied Materials & Interfaces, 2020, 12(1): 322-329.   [33]  SHA J Y, LIN H, TIMIRA V, et al. The construction and application
            [18]  LI Y T, TANG D H, ZHU L, et al. Label-free detection of miRNA   of aptamer to simultaneous identification  of enrofloxacin and
                 cancer  markers based on terminal deoxynucleotidyl transferase-   ciprofloxacin residues in fish[J]. Food Analytical Methods, 2021,
                 induced copper nanoclusters[J]. Analytical Biochemistry, 2019, 585:   14(5): 957-967.
                 113346.                                       [34]  DOLATI S, RAMEZANI M, NABAVINIA M S, et al. Selection of
            [19]  ABNOUS K,  DANESH N M, NAMEGHI M A,  et al. An   specific aptamer against enrofloxacin and fabrication of graphene
                 ultrasensitive electrochemical sensing method for detection of   oxide based label-free fluorescent assay[J]. Analytical Biochemistry,
                 microcystin-LR based on infinity-shaped DNA structure using double   2018, 549: 124-129.
                 aptamer and terminal deoxynucleotidyl transferase[J]. Biosensors and   [35]  LU S  Y, WANG  S L, WU P,  et al. A composite prepared from
                 Bioelectronics, 2019, 144: 111674.                covalent organic framework and  gold  nanoparticles for the
            [20]  CHEN J L,  XU J R, WAN T,  et al. High-sensitive detection of   electrochemical determination of enrofloxacin[J]. Advanced Powder
                 small-cell lung cancer cells based on terminal deoxynucleotidyl   Technology, 2021, 32(6): 2106-2115.
                 transferase-mediated extension polymerization aptamer probe[J].   [36]  NENG J, WANG Y Z, ZHANG Y L, et al. MIPs-SERS sensor based
                 ACS Biomaterials Science & Engineering, 2021, 7(3): 1169-1180.   on  Ag NPs  film for selective detection of enrofloxacin  in food[J].
            [21]  ZHANG X L, ZHENG C, DING L, et al. CRISPR-Cas12a coupled   Biosensors, 2023, 13(3): 330-345.
                 with terminal deoxynucleotidyl transferase  mediated isothermal   [37]  GUO X J, ZHANG L Z, WANG Z W, et al. Fluorescent carbon dots
                 amplification for  sensitive detection of polynucleotide kinase   based sensing system for detection of enrofloxacin in water solutions
                 activity[J]. Sensors and Actuators: B. Chemical, 2021, 330: 129317.   [J]. Spectrochimica Acta Part A,  Molecular and Biomolecular
            [22]  DU  Y C, CUI Y X, LI X Y,  et al. Terminal  deoxynucleotidyl   Spectroscopy, 2019, 219: 15-22.
   118   119   120   121   122   123   124   125   126   127   128