Page 146 - 《精细化工》2023年第12期
P. 146
·2688· 精细化工 FINE CHEMICALS 第 40 卷
到 53.5%,较预处理前甘草渣(10.6%)提高了 4.0 residue to ethanol by sodium carbonate pretreatment and separate
倍。对预处理后的甘草渣进行了高固酶解发酵,发 hydrolysis and fermentation using Mucor hiemalis[J]. Industrial
Crops and Products, 2020, 152: 112537.
现酶解液中菌体生长明显优于对照组,且耗糖速率 [9] KOORAVAND S, GOSHADROU A, HATAMIPOUR M S. Enhanced
更快,发酵 64 h 最终获得 2,3-丁二醇和乙偶姻产量 ethanol production from Glycyrrhiza glabra residue by fungus Mucor
hiemalis[J]. Industrial Crops and Products, 2017, 108: 767-774.
为 43.9 g/L,还原糖转化率 0.42 g/g。与对照组相比,
[10] SINGH S K, SAVOY A W. Ionic liquids synthesis and applications:
酶解液中菌体生长更旺盛,生产强度提高。本文通 An overview[J]. Journal of Molecular Liquids, 2020, 297: 112038.
过研究甘草渣的预处理、高固酶解和糖化发酵,展 [11] HUANG D T (黄冬婷), HUANG J S (黄俊生), TANG J J (汤静洁),
et al. Ultrasonic-assisted ionic liquid extraction of ginseng
示了甘草渣转化为生物基化学品的可行性,所得结 polysaccharide and its antioxidant activity[J]. Fine Chemicals (精细
果可为废弃药渣的生物转化提供参考。 化工), 2022, 39(9): 1851-1857, 1871.
[12] AN Y M, ZHUANG J, LI Y, et al. Pretreatment of Jerusalem
参考文献: artichoke stalk using hydroxylammonium ionic liquids and their
influences on 2,3-butanediol fermentation by Bacillus subtilis[J].
[1] WANG H L (王洪亮), YANG J Y (杨景雅), LIANG M Z (梁明珠).
Bioresource Technology, 2022, 354: 127219.
Research progress on the conversion of agricultural biomass to lactic
[13] SUN J, KONDA N M, PARTHASARATHI R, et al. One-pot
acid and its esters[J]. Fine Chemicals (精细化工), 2021, 38(12):
integrated biofuel production using low-cost biocompatible protic
2438-2449.
ionic liquids[J]. Green Chemistry, 2017, 19(13): 3152-3163.
[2] MA X, GAO M, LI C, et al. Effects of different lignocellulosic
[14] ROCHA E G A, PIN T C, RABELO S C, et al. Evaluation of the use
wastes on alleviating acidification of L-lactic acid production from
of protic ionic liquids on biomass fractionation[J]. Fuel, 2017, 206:
food waste fermentation[J]. Bioresource Technology, 2021, 342:
145-154.
126043.
[15] LIU Z (刘振), LIU C (刘程), LI L F (李龙飞), et al. Removal of
[3] LIU Y J, LI B, FENG Y, et al. Consolidated bio-saccharification:
lignin from corn straw by ionic liquid alkali solution[J]. Chemical
Leading lignocellulose bioconversion into the real world[J]. Biotechnology
Industry and Engineering Progress (化工进展), 2018, 37(5): 1789-
Advances, 2020, 40: 107535.
1794.
[4] JIA L P (贾丽萍), YAO X Q (姚秀清), YANG L (杨磊), et al.
[16] CUI Z, WANG Z, ZHENG M, et al. Advances in biological production
Advances in pretreatment technology of lignocellulose[J]. Journal of
of acetoin: A comprehensive overview[J]. Critical Reviews in
Cellulose Science and Technology (纤维素科学与技术), 2022,
Biotechnology, 2022, 42(8): 1135-1156.
30(2): 72-80.
[17] XIE S, LI Z, ZHU G, et al. Cleaner production and downstream
[5] LUO Y Y (罗燕燕), LIU X S (刘效栓), LI X X (李喜香), et al.
processing of bio-based 2,3-butanediol: A review[J]. Journal of
Research progress on comprehensive utilization and chemical
Cleaner Production, 2022, 343: 131033.
compositions of licorice residue[J]. Western Journal of Traditional
[18] LI Y, DAI J Y, XIU Z L. Salting-out extraction of acetoin from
Chinese Medicine (西部中医药), 2017, 30(3): 138-141.
[6] MA C M (马彩梅). Research progress on comprehensive utilization fermentation broths using hydroxylammonium ionic liquids as
of licorice and licorice residue[J]. Modern Agricultural Science and extractants[J]. Separation and Purification Technology, 2020, 240:
Technology (现代农业科技), 2015, (1): 121-122. 116584.
[7] WANG C, SU X, SUN W, et al. Efficient production of succinic acid [19] ZHANG H M (张红漫), ZHENG R P (郑荣平), CHEN J W (陈敬
from herbal extraction residue hydrolysate[J]. Bioresource Technology, 文 ), et al. Investigation on the determination of lignocellulosics
2018, 265: 443-449. components by NREL method[J]. Chinese Journal of Analysis
[8] ERABI M, GOSHADROU A. Bioconversion of Glycyrrhiza glabra Laboratory (分析试验室), 2010, 29(11): 15-18.
(上接第 2675 页) Journal of Membrane Science, 2017, 525: 57-67.
[38] LIU Z J, REN L, JING J, et al. Fabrication of robust [43] GE M Z, CAO C Y, LIANG F H, et al. A "PDMS-in-water"emulsion
superhydrophobic organic-inorganic hybrid coating through a novel enables mechanochemically robust superhydrophobic surfaces with
two-step phase separation method[J]. Progress in Organic Coatings, self-healing nature[J]. Nanoscale Horizons, 2020, 5(1): 65-73.
2021, 157: 106320. [44] GUO X J, XUE C H, SATHASIVAM S, et al. Fabrication of robust
[39] GHASEMLOU M, DAVER F, IVANOVA E P, et al. Bio-inspired superhydrophobic surfaces via aerosol-assisted CVD and thermo-
sustainable and durable superhydrophobic materials: From nature to triggered healing of superhydrophobicity by recovery of roughness
market[J]. Journal of Materials Chemistry A, 2019, 7(28): 16643- structures[J]. Journal of Materials Chemistry A, 2019, 7(29): 17604-
16670. 17612.
[40] LEE E J, DEKA B J, GUO J X, et al. Engineering the re-entrant [45] LIU Z J, WANG H Y, ZHANG X G, et al. Durable and self-healing
hierarchy and surface energy of PDMS-PVDF membrane for superhydrophobic polyvinylidene fluoride (PVDF) composite coating
membrane distillation using a facile and benign microsphere with in-situ gas compensation function[J]. Surface and Coatings
coating[J]. Environmental Science & Technology, 2017, 51(17): Technology, 2017, 327: 18-24.
10117-10126. [46] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water
[41] LI J, LI Y S, LU Y Y, et al. PDMS/PVDF electrospinning membranes separation techniques: A review of recent progresses and future
for water-in-oil emulsion separation and UV protection[J]. directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-
Biomimetics, 2022,7(4): 217. 16058.
[42] AN A K, GUO J, LEE E J, et al. PDMS/PVDF hybrid electrospun [47] PAN Y L, LIU L M, ZHANG Z J, et al. Surfaces with controllable
membrane with superhydrophobic property and drop impact super-wettability and applications for smart oil-water separation[J].
dynamics for dyeing wastewater treatment using membrane distillation[J]. Chemical Engineering Journal, 2019, 378: 122178.