Page 146 - 《精细化工》2023年第12期
P. 146

·2688·                            精细化工   FINE CHEMICALS                                 第 40 卷

            到 53.5%,较预处理前甘草渣(10.6%)提高了 4.0                         residue to ethanol  by sodium carbonate pretreatment and separate
            倍。对预处理后的甘草渣进行了高固酶解发酵,发                                 hydrolysis and fermentation  using  Mucor hiemalis[J]. Industrial
                                                                   Crops and Products, 2020, 152: 112537.
            现酶解液中菌体生长明显优于对照组,且耗糖速率                             [9]   KOORAVAND S, GOSHADROU A, HATAMIPOUR M S. Enhanced
            更快,发酵 64 h 最终获得 2,3-丁二醇和乙偶姻产量                          ethanol production from  Glycyrrhiza glabra residue by  fungus  Mucor
                                                                   hiemalis[J]. Industrial Crops and Products, 2017, 108: 767-774.
            为 43.9 g/L,还原糖转化率 0.42 g/g。与对照组相比,
                                                               [10]  SINGH S K, SAVOY A W. Ionic liquids synthesis and applications:
            酶解液中菌体生长更旺盛,生产强度提高。本文通                                 An overview[J]. Journal of Molecular Liquids, 2020, 297: 112038.
            过研究甘草渣的预处理、高固酶解和糖化发酵,展                             [11]  HUANG D T (黄冬婷), HUANG J S (黄俊生), TANG J J (汤静洁),
                                                                   et al. Ultrasonic-assisted ionic liquid extraction  of ginseng
            示了甘草渣转化为生物基化学品的可行性,所得结                                 polysaccharide and its antioxidant activity[J]. Fine Chemicals (精细
            果可为废弃药渣的生物转化提供参考。                                      化工), 2022, 39(9): 1851-1857, 1871.
                                                               [12]  AN Y M, ZHUANG J,  LI Y,  et al. Pretreatment of  Jerusalem
            参考文献:                                                  artichoke stalk  using  hydroxylammonium ionic liquids  and their
                                                                   influences on 2,3-butanediol  fermentation by  Bacillus subtilis[J].
            [1]   WANG H L (王洪亮), YANG J Y (杨景雅), LIANG M Z (梁明珠).
                                                                   Bioresource Technology, 2022, 354: 127219.
                 Research progress on the conversion of agricultural biomass to lactic
                                                               [13]  SUN J,  KONDA  N M, PARTHASARATHI R,  et al. One-pot
                 acid and its esters[J]. Fine Chemicals (精细化工), 2021, 38(12):
                                                                   integrated biofuel  production  using low-cost biocompatible protic
                 2438-2449.
                                                                   ionic liquids[J]. Green Chemistry, 2017, 19(13): 3152-3163.
            [2]   MA X,  GAO M,  LI C, et al. Effects of different lignocellulosic
                                                               [14]  ROCHA E G A, PIN T C, RABELO S C, et al. Evaluation of the use
                 wastes on alleviating acidification of L-lactic acid production from
                                                                   of protic ionic liquids on biomass fractionation[J]. Fuel, 2017, 206:
                 food waste fermentation[J]. Bioresource Technology,  2021, 342:
                                                                   145-154.
                 126043.
                                                               [15]  LIU Z (刘振), LIU C (刘程),  LI L F  (李龙飞),  et al. Removal of
            [3]   LIU Y J, LI  B, FENG Y,  et al. Consolidated bio-saccharification:
                                                                   lignin from corn straw by ionic liquid alkali solution[J]. Chemical
                 Leading lignocellulose bioconversion into the real world[J]. Biotechnology
                                                                   Industry and Engineering Progress (化工进展), 2018, 37(5):  1789-
                 Advances, 2020, 40: 107535.
                                                                   1794.
            [4]   JIA L P (贾丽萍), YAO  X Q (姚秀清), YANG L (杨磊),  et al.
                                                               [16]  CUI Z, WANG Z, ZHENG M, et al. Advances in biological production
                 Advances in pretreatment technology of lignocellulose[J]. Journal of
                                                                   of acetoin: A comprehensive overview[J]. Critical  Reviews in
                 Cellulose Science  and Technology (纤维素科学与技术), 2022,
                                                                   Biotechnology, 2022, 42(8): 1135-1156.
                 30(2): 72-80.
                                                               [17]  XIE S, LI Z, ZHU G,  et al. Cleaner production and  downstream
            [5]   LUO Y Y (罗燕燕), LIU  X S (刘效栓), LI X X (李喜香),  et al.
                                                                   processing  of  bio-based 2,3-butanediol: A review[J]. Journal of
                 Research progress on comprehensive utilization and chemical
                                                                   Cleaner Production, 2022, 343: 131033.
                 compositions of licorice residue[J]. Western Journal of Traditional
                                                               [18]  LI Y, DAI J Y,  XIU Z L. Salting-out extraction of acetoin from
                 Chinese Medicine (西部中医药), 2017, 30(3): 138-141.
            [6]   MA C M (马彩梅). Research progress on comprehensive utilization   fermentation broths using  hydroxylammonium ionic liquids as
                 of licorice and licorice residue[J]. Modern Agricultural Science and   extractants[J]. Separation and  Purification Technology, 2020, 240:
                 Technology (现代农业科技), 2015, (1): 121-122.          116584.
            [7]   WANG C, SU X, SUN W, et al. Efficient production of succinic acid   [19]  ZHANG H M (张红漫), ZHENG R P (郑荣平), CHEN J W (陈敬
                 from herbal extraction residue hydrolysate[J]. Bioresource Technology,   文 ),  et al. Investigation on the determination of lignocellulosics
                 2018, 265: 443-449.                               components  by NREL  method[J]. Chinese Journal  of Analysis
            [8]   ERABI M, GOSHADROU A. Bioconversion of Glycyrrhiza glabra   Laboratory (分析试验室), 2010, 29(11): 15-18.



            (上接第 2675 页)                                           Journal of Membrane Science, 2017, 525: 57-67.
            [38]  LIU Z J, REN L, JING J,  et al. Fabrication of robust   [43]  GE M Z, CAO C Y, LIANG F H, et al. A "PDMS-in-water"emulsion
                 superhydrophobic organic-inorganic hybrid coating through a novel   enables  mechanochemically robust superhydrophobic surfaces  with
                 two-step phase separation method[J]. Progress in Organic Coatings,   self-healing nature[J]. Nanoscale Horizons, 2020, 5(1): 65-73.
                 2021, 157: 106320.                            [44]  GUO X J, XUE C H, SATHASIVAM S, et al. Fabrication of robust
            [39]  GHASEMLOU M, DAVER F, IVANOVA E P,  et al. Bio-inspired   superhydrophobic surfaces  via  aerosol-assisted CVD  and thermo-
                 sustainable and durable superhydrophobic materials: From nature to   triggered healing of superhydrophobicity by recovery of roughness
                 market[J]. Journal of Materials Chemistry A, 2019, 7(28): 16643-   structures[J]. Journal of Materials Chemistry A, 2019, 7(29): 17604-
                 16670.                                            17612.
            [40]  LEE  E J, DEKA  B J, GUO J X, et al. Engineering the re-entrant   [45]  LIU Z J, WANG H Y, ZHANG X G, et al. Durable and self-healing
                 hierarchy and surface  energy of PDMS-PVDF membrane for   superhydrophobic polyvinylidene fluoride (PVDF) composite coating
                 membrane distillation  using a facile and benign microsphere   with  in-situ gas compensation function[J]. Surface and Coatings
                 coating[J]. Environmental Science & Technology, 2017, 51(17):   Technology, 2017, 327: 18-24.
                 10117-10126.                                  [46]  GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water
            [41]  LI J, LI Y S, LU Y Y, et al. PDMS/PVDF electrospinning membranes   separation techniques:  A review of recent progresses and  future
                 for water-in-oil  emulsion separation and UV protection[J].   directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-
                 Biomimetics, 2022,7(4): 217.                      16058.
            [42]  AN A K, GUO J, LEE E J, et al. PDMS/PVDF hybrid electrospun   [47]  PAN Y L, LIU L M, ZHANG Z J, et al. Surfaces with controllable
                 membrane with superhydrophobic  property and drop impact   super-wettability and applications for smart oil-water separation[J].
                 dynamics for dyeing wastewater treatment using membrane distillation[J].   Chemical Engineering Journal, 2019, 378: 122178.
   141   142   143   144   145   146   147   148   149   150   151