Page 103 - 《精细化工》2023年第4期
P. 103
す 4 ䷉⢶ྤ喑ぶ: ᵥ䚥ᣏ䦵ౕោ⩌㉍₸⪆⩌➖эᙌᷭ≸͚⮱Ꮑ⩕ g789g
கȠ℁㞟⩌➖эᙌக 3 ͗䲏㐩䔝γᵥ䚥ᣏ䦵ౕោ [5] MAJDINASAB M, MISHRA R K, TANG X Q, et al. Detection of
antibiotics in food: New achievements in the development of
⩌㉍₸⪆⩌➖эᙌᷭ≸͚⮱Ꮑ⩕ⵁ⾣䔈ᆂȡ biosensors[J]. TrAC Trends in Analytical Chemistry, 2020, 127:
㮪♣ᵥ䚥ᣏ䦵ౕោ⩌㉍ᷭ≸䲏᭫ܧγ䒰๔ 115883.
[6] GOODE J A, RUSHWORTH J V H, MILLNER P A. Biosensor
⒉߈喑ѳⰛݺധλᵥ䚥ᣏ䦵⮱⩌➖эᙌகᅇ᱗ͧ regeneration: A review of common techniques and outcomes[J].
ោ⩌㉍₸⪆ᷭ≸⮱ͨ≮⃢ȡឭᱜᅯ䲏⮱̭͗ڠ䩛 Langmuir, 2015, 31(23): 6267-6276.
[7] ZHANG Y (ᑍచ), ZHANG H X (ᑍ⊤䱋). Nucleic acid probe and
䬛䷅᭜ᵥ䚥ᣏ䦵⮱䃫䃎ࣷߌ㘪ࡃȡ䞡λ䭲丌৮ᵤ its application in biological analysis[J]. Chinese Journal of Analysis
Laboratory (ܳᲽ䄂侹ბ), 2020, 39(9): 1002-1012.
᱙℁䒰ฺᱯ喑䰭㺮ౕᏁ⩕䓴⼸͚Ԋ䃮䒰ສ⮱⽠Ⴧᕔ [8] LIU Y M, QIU L, SHENG A Z, et al. Quantitative detection method
হ۳ᕔ喑䔆ᄦᵥ䚥ᣏ䦵⮱ߌ㘪ࡃᵵܧγᰡ倅 of Enterocytozoon hepatopenaei using TaqMan probe real-time
PCR[J]. Journal of Invertebrate Pathology, 2018, 151: 191-196.
⮱㺮Ⅿȡ䦵ᄦ丌৮ᵤ᱙⮱็ᵤࡃ喑䰭㺮䃫䃎Ⱕ䔯Ꮑ [9] YU Y B, LI R, MA Z H, et al. Development and evaluation of a
⮱ߌ㘪ࡃᵥ䚥ᣏ䦵ࣷэᙌᷭ≸ᵵ喑ຯ҂ౕࣾᡒᵥ novel loop mediated isothermal amplification coupled with TaqMan
probe assay for detection of genetically modified organism with NOS
䚥ᣏ䦵х߬⮱हᬣ䭺ѻᷭ≸᱙Ƞ⣝ᔘ䕌ᬣᷭ terminator[J]. Food Chemistry, 2021, 356: 129684.
≸᭜䰭㺮㔰㭾⮱䬛䷅ȡओ̭䲏喑䦵ᄦ丌৮Ⴖڕᷭ [10] GAO P, LIU B, PAN W, et al. A spherical nucleic acid probe based
on the Au-Se bond[J]. Analytical Chemistry, 2020, 92(12): 8459-
≸⮱䰭Ⅿ喑ധλᵥ䚥ᣏ䦵⮱⩌➖эᙌக䰭␎䋠ੳ͇ 8463.
ᅯ䲏ᴴ۳ࡃ≮⼸⩌ϔ⮱㺮Ⅿ喑䔆ᄦλэᙌக⮱䭲 [11] PUENTE-LELIEVRE C, EISCHEID A C. Development and validation
of a duplex real-time PCR assay with locked nucleic acid (LNA)
Ꮑ⩕ڤᰶ䛺㺮ᘼͶȡₑใ喑ࢂ䄨ԎतэᙌܳᲽ㐀 probes for the specific detection of allergenic walnut in complex food
matrices[J]. Food Control, 2021, 121: 107644.
ज㘪ऄݝ㗹ᮜԎत⮱ឝ喑䰭㐀व็⩌➖ᷭ≸
[12] WANG D X, WANG J, WANG Y X, et al. DNA nanostructure-based
ឭᱜᎣ䔈̭ₒхࡃԎत䓀ܧᵵȡ᱗Გ喑ᄳ⩌➖э nucleic acid probes: Construction and biological applications[J].
Chemical Science, 2021, 12: 7602-7622.
ᙌឭᱜ̻㏠ㆠឭᱜȠ3D ក࢝ឭᱜȠܳၽጒ⼸ぶⰥڠ [13] ZHAO F R, XIE S Y, LI B Z, et al. Functional nucleic acids in
ឭᱜ⃢䔈㵹㖁व喑ᐭࣾⱌₐᘼͶ̷⮱̭ₒܳᲽᎠ glycobiology: A versatile tool in the analysis of disease-related
carbohydrates and glycoconjugates[J]. International Journal of Biological
झ喑ᓄ⯷λ⩢ၽகУ⮱ᓛಸࡃ̻䄂㏥⮱Ӭᥧᕔ喑ധ Macromolecul, 2022, 201: 592-606.
λᵥ䚥ᣏ䦵⮱⩌➖эᙌகࣾᆂ䊸߬ज㘪ॵ⣝ᓛಸࡃ [14] HRIOUA A, LOUDIKI A, FARAHI A, et al. Recent advances in
electrochemical sensors for amoxicillin detection in biological and
̻Ӭᥧࡃ䊸߬喑ϻ㔹ᰶݖλោ⩌㉍₸⪆⮱ᬣᷭ≸喠 environmental samples[J]. Bioelectrochemistry, 2021, 137: 107687.
ڣ⁎喑䃫䃎倅ᕔ㘪⮱Ѻ◦➦ᐯᕔȠߌ㘪็ᵤࡃ⮱ᵥ [15] LIANG T T, QIN X L, XIANG Y H, et al. Advances in nucleic
acids-scaffolded electrical sensing of extracellular vesicle biomarkers[J].
䚥ᣏ䦵喑Ჱᐧᓛ䭢݄ᝃ㟜❴эᙌக喑ᄳᰶ᱈⣝็ TrAC Trends in Analytical Chemistry, 2022, 148: 116532.
ោ⩌㉍₸⪆⮱हᬣᷭ≸ᝃ倅䕇䛼ᷭ≸喑ϻ㔹䭺ѻ [16] ZHANG K, LI H Y, WANG W J, et al. Application of multiplexed
aptasensors in food contaminants detection[J]. ACS Sensors, 2020,
ᷭ≸᱙喑हᬣ␎䋠䭲丌৮ᷭ≸ᄦλ۳ᕔ̻⽠ 5(12): 3721-3738.
[17] HUANG Y, ZHENG J, WANG L, et al. Sensitive detection of
Ⴧᕔ⮱䰭Ⅿ喠ₑใ喑ᄳᵥ䚥ᣏ䦵ጔໆ㐀व็⣝А chloramphenicol based on Ag-DNAzyme-mediated signal amplification
ܳ⻨̻ᷭ≸ឭᱜ喑䃫䃎็䛺Ԏत䓀ܧᵵ喑Ჱᐧ็ modulated by DNA/metal ion interaction[J]. Biosensors and
Bioelectronics, 2019, 127: 45-49.
䛺䄨Ԏतэᙌக喑ज␎䋠䭲ោ⩌㉍ᷭ≸Ꮑ⩕䓴 [18] BAI Z H, CHEN Y, LI F, et al. Electrochemical aptasensor for
⼸͚ᄦλэᙌகᕔ̻ज䲍ᕔ⮱㺮Ⅿ喠ᰭऻ喑ᄳ sulfadimethoxine detection based on the triggered cleavage activity
of nuclease P1 by aptamer-target complex[J]. Talanta, 2019, 204:
ധλᵥ䚥ᣏ䦵⮱⩌➖эᙌឭᱜ̻ᮧ㘪ಸ䃫ิᝃ㜗ߕ 409-414.
ࡃЗக㖁⩕喑ᄳҬᓄោ⩌㉍₸⪆⩌➖эᙌகाᮧ㘪 [19] LIU X G, HUANG D L, LAI C, et al. Recent advances in sensors for
tetracycline antibiotics and their applications[J]. TrAC Trends in
ಸȠ㜗ߕࡃाࣾᆂ喑ͧ丌৮Ⴖڕᷭ≸ӈज䲍⮱ Analytical Chemistry, 2018, 109: 260-274.
[20] JAHANBANI S, BENVIDI A. Comparison of two fabricated
ᩜᠮহߎȡ
aptasensors based on modified carbon paste/oleic acid and magnetic
bar carbon paste/Fe 3O 4@oleic acid nanoparticle electrodes for
࣯㔰᪴⡛喟 tetracycline detection[J]. Biosensors and Bioelectronics, 2016, 85:
553-562.
[1] ZHENG J J (䗾ᮜ༴). Analysis on the application of common
[21] WONGKAEW N, SIMSEK M, GRIESCHE C, et al. Functional
detection techniques for antibiotic residues in food[J]. Journal of
nanomaterials and nanostructures enhancing electrochemical biosensors
Food Safety and Quality (丌৮Ⴖڕ䉕䛼ᷭ≸႓្), 2020, 11(21): and Lab-on-a-Chip performances: Recent progress, applications, and
7884-7889. future perspective[J]. Chemical Reviews, 2019, 119(1): 120-194.
[2] MENKEM Z E, NGANGOM B L, TAMUNJOH S S A, et al. [22] CHEN Y, LIU B, CHEN Z B, et al. Innovative electrochemical
Antibiotic residues in food animals: Public health concern[J]. Acta sensor using TiO 2 nanomaterials to detect phosphopeptides[J].
Analytical Chemistry, 2021, 93(30): 10635-10643.
Ecologica Sinica, 2019, 39(5): 411-415.
[23] SANKO V, SENOCAK A, TUMAY S O, et al. An electrochemical
[3] LIU Y Z (݅ᒓ䦷), ZHANG L L (ᑍͪͪ), XU T (ᒽᡧ), et al. sensor for detection of trace-level endocrine disruptor bisphenol A
Application progress of modern biotechnology in the detection of
using Mo 2Ti 2AlC 3 MAX phase/MWCNT composite modified
antibiotic residues in animal-derived foods[J]. China Food Additives electrode[J]. Environmental Research, 2022, 212: 113071.
(͚ప丌৮⌨ߍݯ), 2020, 31(12): 122-130. [24] HIRA S A, YUSUF M, ANNAS D, et al. Recent advances on
[4] WANG Q, ZHAO W M. Optical methods of antibiotic residues conducting polymer-supported nanocomposites for nonenzymatic
detections: A comprehensive review[J]. Sensors and Actuators B: electrochemical sensing[J]. Industrial & Engineering Chemistry
Chemical, 2018, 269: 238-256. Research, 2021, 60(37): 13425-13437.