Page 103 - 《精细化工》2023年第4期
P. 103

す 4 ᱌                     ䷉⢶ྤ喑ぶ:  ᵥ䚥ᣏ䦵ౕោ⩌㉍₸⪆⩌➖эᙌᷭ≸͚⮱Ꮑ⩕                                   g789g


            கȠ℁㞟⩌➖эᙌக 3 ͗᫦䲏㐩䔝γᵥ䚥ᣏ䦵ౕោ                           [5]   MAJDINASAB M, MISHRA R K, TANG X Q, et al. Detection of
                                                                   antibiotics in food: New achievements in the development of
            ⩌㉍₸⪆⩌➖эᙌᷭ≸͚⮱Ꮑ⩕ⵁ⾣䔈ᆂȡ                                    biosensors[J]. TrAC Trends in Analytical Chemistry, 2020, 127:
                 㮪♣ᵥ䚥ᣏ䦵ౕោ⩌㉍ᷭ≸᫦䲏᭫⹧ܧγ䒰๔                              115883.
                                                               [6]   GOODE J A, RUSHWORTH J  V  H, MILLNER P A.  Biosensor
            ⒉߈喑ѳⰛݺധλᵥ䚥ᣏ䦵⮱⩌➖эᙌகᅇ᱗᜽ͧ                                 regeneration: A review of common  techniques and outcomes[J].
            ោ⩌㉍₸⪆ᷭ≸⮱ͨ≮᝸⃢ȡឭᱜᅯ䲏⮱̭͗ڠ䩛                                 Langmuir, 2015, 31(23): 6267-6276.
                                                               [7]   ZHANG Y (ᑍచ), ZHANG H X (ᑍ⊤䱋). Nucleic acid probe and
            䬛䷅᭜ᵥ䚥ᣏ䦵⮱䃫䃎ࣷߌ㘪ࡃȡ䞡λ჋䭲丌৮ᵤ                                 its application in biological analysis[J]. Chinese Journal of Analysis
                                                                   Laboratory (ܳᲽ䄂侹ბ), 2020, 39(9): 1002-1012.
            ᱙℁䒰ฺᱯ喑䰭㺮ౕᏁ⩕䓴⼸͚Ԋ䃮䒰ສ⮱⽠Ⴧᕔ                             [8]   LIU Y M, QIU L, SHENG A Z, et al. Quantitative detection method
            হ۳⶛ᕔ喑䔆ᄦᵥ䚥ᣏ䦵⮱ߌ㘪ࡃ᫦ᵵ᣽ܧγᰡ倅                                 of  Enterocytozoon hepatopenaei using TaqMan probe real-time
                                                                   PCR[J]. Journal of Invertebrate Pathology, 2018, 151: 191-196.
            ⮱㺮Ⅿȡ䦵ᄦ丌৮ᵤ᱙⮱็ᵤࡃ喑䰭㺮䃫䃎Ⱕ䔯Ꮑ                             [9]   YU Y B,  LI R, MA Z H,  et al. Development and evaluation of a
            ⮱ߌ㘪ࡃᵥ䚥ᣏ䦵ࣷэᙌᷭ≸᫦ᵵ喑ຯ҂ౕࣾᡒᵥ                                 novel loop mediated isothermal amplification coupled with TaqMan
                                                                   probe assay for detection of genetically modified organism with NOS
            䚥ᣏ䦵х߬⮱हᬣ䭺ѻᷭ≸᜽᱙Ƞ჋⣝ᔘ䕌჋ᬣᷭ                                 terminator[J]. Food Chemistry, 2021, 356: 129684.
            ≸᭜䰭㺮㔰㭾⮱䬛䷅ȡओ̭᫦䲏喑䦵ᄦ丌৮Ⴖڕᷭ                             [10]  GAO P, LIU B, PAN W, et al. A spherical nucleic acid probe based
                                                                   on the Au-Se bond[J]. Analytical Chemistry, 2020, 92(12): 8459-
            ≸⮱䰭Ⅿ喑ധλᵥ䚥ᣏ䦵⮱⩌➖эᙌக䰭␎䋠ੳ͇                                 8463.
            ᅯ䲏ᴴ۳ࡃ≮⼸⩌ϔ⮱㺮Ⅿ喑䔆ᄦλэᙌக⮱჋䭲                             [11]  PUENTE-LELIEVRE C, EISCHEID A C. Development and validation
                                                                   of a duplex real-time PCR  assay with locked nucleic acid (LNA)
            Ꮑ⩕ڤᰶ䛺㺮ᘼͶȡₑใ喑ࢂ䄨᪝ԎतэᙌܳᲽ㐀                                 probes for the specific detection of allergenic walnut in complex food
                                                                   matrices[J]. Food Control, 2021, 121: 107644.
            ᳉ज㘪ऄݝ㗹ᮜԎत⮱᎟ឝ喑䰭㐀व็⻺⩌➖ᷭ≸
                                                               [12]  WANG D X, WANG J, WANG Y X, et al. DNA nanostructure-based
            ឭᱜᎣ䔈̭ₒхࡃԎत䓀ܧ᫦ᵵȡ᱗Გ喑ᄳ⩌➖э                                 nucleic acid probes: Construction and biological applications[J].
                                                                   Chemical Science, 2021, 12: 7602-7622.
            ᙌឭᱜ̻㏠ㆠឭᱜȠ3D ក࢝ឭᱜȠܳၽጒ⼸ぶⰥڠ                           [13]  ZHAO F R, XIE  S  Y, LI B Z,  et al. Functional  nucleic acids in
            ឭᱜ᝸⃢䔈㵹㖁व喑ᐭࣾⱌₐᘼͶ̷⮱̭ₒܳᲽᎠ                                 glycobiology: A versatile tool in the analysis of disease-related
                                                                   carbohydrates and glycoconjugates[J]. International Journal of Biological
            झ喑ᓄ⯷λ⩢ၽகУ⮱ᓛಸࡃ̻䄂㏥⮱Ӭᥧᕔ喑ധ                                 Macromolecul, 2022, 201: 592-606.
            λᵥ䚥ᣏ䦵⮱⩌➖эᙌகࣾᆂ䊸߬ज㘪ॵ⣝ᓛಸࡃ                             [14]  HRIOUA A,  LOUDIKI A,  FARAHI  A,  et al. Recent advances in
                                                                   electrochemical sensors for amoxicillin detection in biological and
            ̻Ӭᥧࡃ䊸߬喑ϻ㔹ᰶݖλោ⩌㉍₸⪆⮱჋ᬣᷭ≸喠                                environmental samples[J]. Bioelectrochemistry, 2021, 137: 107687.
            ڣ⁎喑䃫䃎倅ᕔ㘪⮱Ѻ◦➦ᐯᕔȠߌ㘪็ᵤࡃ⮱ᵥ                             [15]  LIANG T T,  QIN X L, XIANG  Y  H,  et al. Advances in nucleic
                                                                   acids-scaffolded electrical sensing of extracellular vesicle biomarkers[J].
            䚥ᣏ䦵喑Ჱᐧᓛ䭢݄ᝃ㟜❴эᙌக喑ᄳᰶ᱈჋⣝็                                 TrAC Trends in Analytical Chemistry, 2022, 148: 116532.
            ⻺ោ⩌㉍₸⪆⮱हᬣᷭ≸ᝃ倅䕇䛼ᷭ≸喑ϻ㔹䭺ѻ                             [16]  ZHANG K, LI H Y, WANG W J, et al. Application of multiplexed
                                                                   aptasensors in food contaminants detection[J]. ACS Sensors, 2020,
            ᷭ≸᜽᱙喑हᬣ␎䋠჋䭲丌৮ᷭ≸ᄦλ۳⶛ᕔ̻⽠                                 5(12): 3721-3738.
                                                               [17]  HUANG Y,  ZHENG J,  WANG L,  et al. Sensitive detection of
            Ⴧᕔ⮱䰭Ⅿ喠ₑใ喑ᄳᵥ䚥ᣏ䦵ጔໆ㐀व็⻺⣝А                                 chloramphenicol based on Ag-DNAzyme-mediated signal amplification
            ܳ⻨̻ᷭ≸ឭᱜ喑䃫䃎็䛺Ԏत䓀ܧ᫦ᵵ喑Ჱᐧ็                                 modulated by DNA/metal ion interaction[J]. Biosensors and
                                                                   Bioelectronics, 2019, 127: 45-49.
            䛺䄨᪝Ԏतэᙌக喑ज␎䋠჋䭲ោ⩌㉍ᷭ≸Ꮑ⩕䓴                             [18]  BAI Z H, CHEN  Y, LI F,  et al. Electrochemical  aptasensor for
            ⼸͚ᄦλэᙌக㇫⶛ᕔ̻ज䲍ᕔ⮱㺮Ⅿ喠ᰭऻ喑ᄳ                                 sulfadimethoxine detection based on the triggered cleavage activity
                                                                   of nuclease P1 by aptamer-target complex[J]. Talanta,  2019, 204:
            ധλᵥ䚥ᣏ䦵⮱⩌➖эᙌឭᱜ̻ᮧ㘪ಸ䃫ิᝃ㜗ߕ                                 409-414.
            ࡃЗக㖁⩕喑ᄳҬᓄោ⩌㉍₸⪆⩌➖эᙌகाᮧ㘪                             [19]  LIU X G, HUANG D L, LAI C, et al. Recent advances in sensors for
                                                                   tetracycline antibiotics and  their applications[J]. TrAC Trends in
            ಸȠ㜗ߕࡃ᫦ाࣾᆂ喑ͧ丌৮Ⴖڕᷭ≸᣽ӈज䲍⮱                                 Analytical Chemistry, 2018, 109: 260-274.
                                                               [20]  JAHANBANI S, BENVIDI  A. Comparison  of two fabricated
            ᩜᠮহ᰺ߎȡ
                                                                   aptasensors based on modified carbon paste/oleic acid and magnetic
                                                                   bar carbon paste/Fe 3O 4@oleic acid nanoparticle electrodes for
            ࣯㔰᪴⡛喟                                                  tetracycline detection[J]. Biosensors and Bioelectronics, 2016, 85:
                                                                   553-562.
            [1]   ZHENG J J (䗾ᮜ༴). Analysis on the application  of common
                                                               [21]  WONGKAEW N, SIMSEK M, GRIESCHE C, et  al. Functional
                 detection techniques for antibiotic residues in food[J]. Journal of
                                                                   nanomaterials and nanostructures enhancing electrochemical  biosensors
                 Food Safety and Quality (丌৮Ⴖڕ䉕䛼ᷭ≸႓្), 2020, 11(21):   and Lab-on-a-Chip performances: Recent progress, applications, and
                 7884-7889.                                        future perspective[J]. Chemical Reviews, 2019, 119(1): 120-194.
            [2]   MENKEM Z E,  NGANGOM B  L, TAMUNJOH S S A,  et al.   [22]  CHEN Y, LIU  B, CHEN  Z B,  et al. Innovative electrochemical
                 Antibiotic residues in food animals: Public health concern[J]. Acta   sensor using TiO 2 nanomaterials to detect phosphopeptides[J].
                                                                   Analytical Chemistry, 2021, 93(30): 10635-10643.
                 Ecologica Sinica, 2019, 39(5): 411-415.
                                                               [23]  SANKO V, SENOCAK A, TUMAY S O, et al. An electrochemical
            [3]   LIU Y Z (݅ᒓ䦷), ZHANG  L L (ᑍͪͪ), XU T (ᒽᡧ),  et al.   sensor for detection of trace-level endocrine disruptor bisphenol A
                 Application  progress of modern  biotechnology in the  detection of
                                                                   using Mo 2Ti 2AlC 3 MAX phase/MWCNT  composite  modified
                 antibiotic residues in animal-derived foods[J]. China Food Additives   electrode[J]. Environmental Research, 2022, 212: 113071.
                 (͚ప丌৮⌨ߍݯ), 2020, 31(12): 122-130.             [24]  HIRA  S A, YUSUF  M, ANNAS  D,  et al. Recent advances on
            [4]   WANG Q, ZHAO W M. Optical methods of antibiotic residues   conducting polymer-supported  nanocomposites for nonenzymatic
                 detections: A comprehensive review[J]. Sensors and Actuators B:   electrochemical sensing[J]. Industrial & Engineering  Chemistry
                 Chemical, 2018, 269: 238-256.                     Research, 2021, 60(37): 13425-13437.
   98   99   100   101   102   103   104   105   106   107   108