Page 105 - 《精细化工》2023年第4期
P. 105

す 40 ࢤす 4 ᱌                             ㇫   ㏳   ࡃ   ጒ                                  Vol.40, No.4
             20 23 Ꭱ 4 ᰵ                             FINE CHEMICALS                                  Apr.  2023


              㐩䃧
                    Ӱ䔈ᓛ⩌➖㘋ใ⩢ၽ䒙⼨⮱㏠ㆠᱽ᫆ⵁ⾣䔈ᆂ



               㟼㉘㡳      1,2,3 喑݅䔉ም      1,2,3 喑ႆχᭂ     1,2,3 喑Шྤ㢶      1,2,3 喑ᱻᘍ䰕     1,2,3 喑ᱻϻͫ      1,2,3*

                 喍1.  ࡄϙ⻾ឭ๔႓  㘪⎽̻⣜ධጒ⼸႓䮏喑ࡄϙ  100083喠2.  ࡄϙ⻾ឭ๔႓  ࡄϙጯጒ͇ڥಸ↎ᴀ➖䉱⎽
                 ࡃั⤳䛺◦჋侹ბ喑ࡄϙ 100083喠3.  ࡄϙ⻾ឭ๔႓  ࡄϙጯ倅ᵎ㞯㘪̻⣜Ԋጒ⼸ⵁ⾣͚ᓰ喑ࡄϙ  100083喎


                 ᦅ㺮喟㘋ใ⩢ၽ䒙⼨喍EET喎᭜ϔ⩢ᓛ⩌➖ౕА䅏䓴⼸͚ᄳ㜗䏘ϔ⩌⮱⩢ၽ䒙⼨ݝใ䘕⩢ၽऄҀ⮱䓴⼸喑♣㔹
                 䒰㑀ᚏ⮱㘋ใ⩢ၽ䒙⼨䕌⢴᭫㦄ᒞ৺γᓛ⩌➖⛰᫆⩢↍喍MFCs喎⮱ϔ⩢ᕔ㘪喑᣽倅㘋ใ⩢ၽ䒙⼨⮱᩵⢴ᄦᣕߕ
                 ᓛ⩌➖⛰᫆⩢↍⮱๔㻱὎Ꮑ⩕ڤᰶ䛺㺮ᘼͶȡ㏠ㆠᱽ᫆ڤิхᐯ⮱ᄩ⩢ᕔȠ⽠ჇᕔВࣷ⩌➖Ⱕღᕔ喑ᄦᩦ઱䭠
                 Ხ̻ϔ⩢ᓛ⩌➖͸䬡⮱⩢ၽэ䔿䕌⢴ڤᰶ䛺㺮҉⩕ȡ䄒᪴㐩䔝γ㘋ใ⩢ၽ䒙⼨⮱ͨ㺮䌜ᒱ喑䬽䔝γ̺ह⻺ㆨ⮱
                 ㏠ㆠᱽౕ᫆Ӱ䔈㘋ใ⩢ၽ䒙⼨䓴⼸͚⮱ᱧ⤳হڣᄦᏁ⮱ MFCs ϔ⩢ᕔ㘪喑Ꭳᆂ᱈γ㏠ㆠᱽ᫆ᑧࡃᓛ⩌➖ EET 䓴
                 ⼸ౕᓛ⩌➖⩢ࡃ႓ឭᱜݖ⩕᫦䲏⮱ⵁ⾣ݺᮜȡ
                 ڠ䩛䃺喟㘋ใ⩢ၽэ䔿喠㏠ㆠᱽ᫆喠ϔ⩢ᓛ⩌➖喠⩢ၽэ⩢ᱧݣ喠ᓛ⩌➖⛰᫆⩢↍
                 ͚ఫܳㆨत喟TB34喠TM911.45      ᪴⡛ᴴ䃳⴮喟A      ᪴」㑃त喟1003-5214 (2023) 04-0791-11


                          Research progress of nanomaterials promoting microbial

                                           extracellular electron transfer


                    SU Zijing 1,2,3 , LIU Yuanfeng 1,2,3 , SUN Yaxin 1,2,3 , REN Tingli 1,2,3 , LI Huiyu 1,2,3 , LI Congju 1,2,3*
                 喍1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083,
                 China; 2. Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and
                 Technology Beijing, Beijing  100083, China; 3. Beijing Higher Institution Engineering Research Center of Energy
                 Conservation and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China喎

                 Abstract:  Extracellular electron transfer (EET) is a  process in  which electricigens transfer electrons
                 produced by themselves to external electron acceptors during metabolism. However, the relatively slow rate
                 of extracellular electron transfer significantly affects the electrical  performance of  microbial  fuel cells
                 (MFCs). Improving the efficiency of extracellular electron transfer is of great significance for promoting the
                 large-scale application  of  microbial fuel cells.  Nanomaterials  have been widely  used to  promote the
                 extracellular electron transfer of microorganisms due to their excellent electrical conductivity, stability and
                 biocompatibility. In this review, the main routes of extracellular electron transfer was firstly introduced. The
                 mechanism of different kinds of nanomaterials in promoting the process of extracellular electron transfer
                 and the electrical performances of their corresponding MFCs were then described. In the end, the research
                 prospect  of using nanomaterials for microbial EET process enhancement in microbial electrochemical
                 technology was discussed.
                 Key  words:  extracellular electron transfer; nanomaterials; electrogenerative microorganism; electronic
                 transmission mechanism; microbial fuel cells


                 䮼Ɑڕ⤰㘪⎽࢞ᱧ⮱ߍޔȠࡃⴠ⛰᫆ᢿᩫ⮱෋                          ⻺ݖ⩕ϔ⩢㏳㣹⮱А䅏喑ᄳᏌⅡ͚ज⩌➖䭺㼐ᰶᱧ
            ߍহᄦ⣜ධ↎ᴀ⮱倅Ꮣڠ∕喑ߍ䕌γᄦजᠮ㐚㐬㞟                             ➖͚⮱ࡃ႓㘪Ⱑᣒ䒙ࡃͧ⩢㘪⮱᫝ڡ㐬㞟ឭᱜ                     [2-3] 喑
                           [1]
            㘪⎽⮱Ꭼ∈ⵁ⾣ ȡᓛ⩌➖⛰᫆⩢↍喍MFC喎᭜̭                            MFC ឭᱜͧ㑀㼐⣜ධ↎ᴀ̻㘪⎽࢞ᱧ䬛䷅᣽ӈγ

                 ᩣ⽬ᬒ᱌喟2022-06-27;  Ⴧ⩕ᬒ᱌喟2022-09-30; DOI: 10.13550/j.jxhg.20220599
                 ധ䛾䶦Ⱋ喟పუ㜗♣⻾႓ധ䛾喍52170019, 51973015喎喠͚๛倅ᵎധ᱙⻾ⵁ͇ߎ䉦̀䶦䉱䛾喍06500100喎
                 ҉㔲キϸ喟㟼㉘㡳喍1997ÿ喎喑ຠ喑ⶂธ⩌喑E-mail喟suzijingsjz@163.comȡ㖁㈨ϧ喟ᱻϻͫ喍1972ÿ喎喑⩤喑᪆ᢵ喑E-mail: congjuli@
                 126.comȡ
   100   101   102   103   104   105   106   107   108   109   110