Page 104 - 《精细化工》2023年第4期
P. 104
g790g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
[25] TAJIK S, BEITOLLAHI H, NEJAD F G, et al. Recent electrochemical for the detection andidentification of antibiotics[J]. Analytical
applications of metal-organic framework-based materials[J]. Crystal Methods, 2019, 11: 2829-2844.
Growth & Design, 2020, 20(10): 7034-7064. [45] SUN L, ROTARU A, ROBEYNS K, et al. A colorimetric sensor for
[26] SUN Z W, PENG Y, WANG M H, et al. Electrochemical deposition the highly selective, ultra-sensitive, and rapid detection of volatile
of Cu metal-organic framework films for the dual analysis of organic compounds and hazardous gases[J]. Industrial & Engineering
pathogens[J]. Analytical Chemistry, 2021, 93(25): 8994-9001. Chemistry Research, 2021, 60(24): 8788-8798.
[27] CHEN M, GAN N, LI T H, et al. An electrochemical aptasensor for [46] KHANSILI N, KRISHNA M P. Sensitive metal oxide-clay
multiplex antibiotics detection using Y-shaped DNA-based metal nanocomposite colorimetric sensor development for aflatoxin detection in
ions encoded probes with NMOF substrate and CSRP target- foods: Corn and almond[J]. ACS Omega, 2021, 6(23): 14911-14925.
triggered amplification strategy[J]. Analytica Chimica Acta, 2017, [47] DONG Y, WAN L, LV S, et al. Construction of a molybdenum
968: 30-39. disulfide-based colorimetric sensor for label-free infectious disease
[28] WANG H Z, WANG Y, LIU S, et al. Signal-on electrochemical analysis coupled with a catalyzed hairpin assembly reaction[J].
detection of antibiotics at zeptomole level based on target-aptamer Langmuir, 2022, 38(5): 1791-1796.
binding triggered multiple recycling amplification[J]. Biosensors and [48] LUAN Q, GAN N, CAO Y T, et al. Mimicking an enzyme-based
Bioelectronics, 2016, 80: 471-476. colorimetric aptasensor for antibiotic residue detection in milk
[29] WANG X K, SHANG H Z, MA C P, et al. A fluorescence assay for combining magnetic loop-DNA probes and CHA-assisted target
exosome detection based on bivalent cholesterol anchor triggered recycling amplification[J]. Journal of Agricultural and Food Chemistry,
target conversion and enzyme-free signal amplification[J]. Analytical 2017, 65(28): 5731-5740.
Chemistry, 2021, 93(24): 8493-8500. [49] CUI X J, LI R G, LIU X F, et al. Low-background and visual
[30] LING P H, WANG L Y, CHENG S, et al. Ultrasensitive electrochemical detection of antibiotic based on target-activated colorimetric split
biosensor for protein detection based on target-triggering cascade peroxidase DNAzyme coupled with dual nicking enzyme signal
enzyme-free signal amplification strategy[J]. Analytica Chimica amplification[J]. Analytica Chimica Acta, 2018, 997: 1-8.
Acta, 2022, 1202: 339675. [50] ETEDALI P, BEHBAHANI M, MOHABATKAR H, et al. Field-
[31] LV Y X, SUN Y Y, LIU W J, et al. Enzyme-free dual-amplification usable aptamer-gold nanoparticles-based colorimetric sensor for rapid
2+
assay for colorimetric detection of tetracycline based on Mg -dependent detection of white spot syndrome virus in shrimp[J]. Aquaculture,
DNAzyme assisted catalytic hairpin assembly[J]. Talanta, 2022, 241: 2022, 548: 737628.
123214. [51] CHEN G Y, ZHANG C Y, YIN S J, et al. Highly sensitive visual
[32] HONG F, CHEN X X, CAO Y T, et al. Enzyme- and label-free colorimetric sensor for trichlorfon detection based on the inhibition
electrochemical aptasensor for kanamycin detection based on double of metallization of gold nanorods[J]. Spectrochimica Acta, Part A:
stir bar-assisted toehold-mediated strand displacement reaction for Molecular and Biomolecular Spectroscopy, 2022, 270: 120850.
dual-signal amplification[J]. Biosensors and Bioelectronics, 2018, [52] LI J W, LIU Y M, LIN H, et al. Label-free exonuclease I-assisted
112: 202-208. signal amplification colorimetric sensor for highly sensitive detection
[33] YUAN X C (㶮ᮀ᭒). Advances in optical biosensors for detection of kanamycin[J]. Food Chemistry, 2021, 347: 128988.
of antibiotics[J]. Feed Review (亟᫆ࢇ㻵), 2018, (11): 43-46. [53] RAMEZANI M, DANESH N M, LAVAEE P, et al. A novel
[34] YANG Y X, GHALANDARI B, LIN L Y, et al. A turn-on colorimetric triple-helix molecular switch aptasensor for ultrasensitive
2+
fluorescence sensor based on Cu modulated DNA-templated silver detection of tetracycline[J]. Biosensors and Bioelectronics, 2015, 70:
nanoclusters for glyphosate detection and mechanism investigation[J]. 181-187.
Food Chemistry, 2022, 367: 130617. [54] GAUDIN V. Advances in biosensor development for the screening of
[35] WANG S, CHEN H Y, XIE H L, et al. A novel thioctic acid-carbon antibiotic residues in food products of animal origin-A comprehensive
2+
dots fluorescence sensor for the detection of Hg and thiophanate review[J]. Biosensors and Bioelectronics, 2017, 90: 363-377.
methyl via S-Hg affinity[J]. Food Chemistry, 2021, 346: 128923. [55] HOU H, BAI X J, XING C Y, et al. Aptamer-based cantilever array
[36] DEHGHANI S, DANESH N M, RAMEZANI M, et al. A label-free sensors for oxytetracycline detection[J]. Analytical Chemistry, 2013,
fluorescent aptasensor for detection of kanamycin based on dsDNA- 85(4): 2010-2014.
capped mesoporous silica nanoparticles and Rhodamine B[J]. [56] BAI X J, HOU H, ZHAN B L, et al. Label-free detection of kanamycin
Analytica Chimica Acta, 2018, 1030: 142-147. using aptamer-based cantilever array sensor[J]. Biosensors and
[37] SUN C Y, SU R F, BIE J X, et al. Label-free fluorescent sensor based Bioelectronics, 2014, 56: 112-116.
on aptamer and thiazole orange for the detection of tetracycline[J]. [57] YUE F L, LI F L, KONG Q Q, et al. Recent advances in aptamer-
Dyes and Pigments, 2018, 149: 867-875. based sensors for aminoglycoside antibiotics detection and their
[38] LUO Z W, WANG Y M, LU X Y, et al. Fluorescent aptasensor for applications[J]. Science of the Total Environment, 2021, 762:
antibiotic detection using magnetic bead composites coated with gold 143129.
nanoparticles and a nicking enzyme[J]. Analytica Chimica Acta, [58] RICHTER L, ALBRYCHT P, KSIEZOPOLSKA-GOCALSKA M, et
2017, 984: 177-184. al. Fast and efficient deposition of broad range of analytes on substrates
[39] FENG T T (ۜྤྤ). Research progress and application of nanometer for surface enhanced Raman spectroscopy[J]. Biosensors and
fluorescence biosensor[J]. Biological Chemical Engineering (⩌➖ࡃ Bioelectronics, 2020, 156: 112124.
ጒ), 2017, 3(6): 78-81. [59] JIANG Y F, SUN D W, PU H B, et al. Ultrasensitive analysis of
[40] ZHANG W S, ZHONG H D, ZHAO P P, et al. Carbon quantum dot kanamycin residue in milk by SERS-based aptasensor[J]. Talanta,
fluorescent probes for food safety detection: Progress, opportunities 2019, 197: 151-158.
and challenges[J]. Food Control, 2022, 133: 108591. [60] VURAN B, ULUSOY H I, SARP G, et al. Determination of
[41] XU J, LI H H, ARUMUGAM S S, et al. A turn-on fluorescence chloramphenicol and tetracycline residues in milk samples by means
sensor for rapid sensing of ATP based on luminescence resonance of nanofiber coated magnetic particles prior to high-performance
energy transfer between upconversion nanoparticles and Cy3 in vivo liquid chromatography-diode array detection[J]. Talanta, 2021, 230:
or vitro[J]. Spectrochimica Acta, Part A: Molecular and Biomolecular 122307.
Spectroscopy, 2022, 265: 120341. [61] LOUPPIS A P, KONTOMINAS M G, PAPASTEPHANOU C.
[42] HE Y H, ZHANG B Y, FAN Z F. Aptamer based fluorometric Determination of antibiotic residues in honey by high-performance
sulfamethazine assay based on the use of graphene oxide quantum liquid chromatography with electronspray ionization tandem mass
dots[J]. Mikrochim Acta, 2018, 185(3): 163-171. spectrometry[J]. Food Analytical Methods, 2017, 10(10): 3385-3397.
[43] LIU X Y, GAO T F, GAO X, et al. An aptamer based sulfadimethoxine [62] FANG B L, HU S, WANG C, et al. Lateral flow immunoassays
assay that uses magnetized upconversion nanoparticles[J]. Microchimica combining enrichment and colorimetry-fluorescence quantitative
Acta, 2017, 184(9): 3557-3563. detection of sulfamethazine in milk based on trifunctional magnetic
[44] ABEDALWAFA M A, LI Y, NI C F, et al. Colorimetric sensor arrays nanobeads[J]. Food Control, 2019, 98: 268-273.