Page 104 - 《精细化工》2023年第4期
P. 104

g790g                             ㇫㏳ࡃጒ   FINE CHEMICALS                                 す 40 ࢤ

            [25]  TAJIK S, BEITOLLAHI H, NEJAD F G, et al. Recent electrochemical   for the detection andidentification of antibiotics[J]. Analytical
                 applications of metal-organic framework-based materials[J]. Crystal   Methods, 2019, 11: 2829-2844.
                 Growth & Design, 2020, 20(10): 7034-7064.     [45]  SUN L, ROTARU A, ROBEYNS K, et al. A colorimetric sensor for
            [26]  SUN Z W, PENG Y, WANG M H, et al. Electrochemical deposition   the highly selective, ultra-sensitive, and rapid  detection of volatile
                 of Cu metal-organic framework films for  the dual analysis of   organic compounds and hazardous gases[J]. Industrial & Engineering
                 pathogens[J]. Analytical Chemistry, 2021, 93(25): 8994-9001.   Chemistry Research, 2021, 60(24): 8788-8798.
            [27]  CHEN M, GAN N, LI T H, et al. An electrochemical aptasensor for   [46]  KHANSILI N, KRISHNA M P.  Sensitive metal oxide-clay
                 multiplex antibiotics detection  using  Y-shaped DNA-based metal   nanocomposite colorimetric sensor development for aflatoxin detection in
                 ions encoded probes with NMOF substrate and CSRP target-   foods: Corn and almond[J]. ACS Omega, 2021, 6(23): 14911-14925.
                 triggered amplification strategy[J]. Analytica  Chimica Acta, 2017,   [47]  DONG  Y,  WAN L, LV S,  et al. Construction  of a molybdenum
                 968: 30-39.                                       disulfide-based colorimetric sensor for label-free infectious  disease
            [28]  WANG H  Z, WANG  Y, LIU S,  et al. Signal-on electrochemical   analysis coupled  with a catalyzed  hairpin assembly reaction[J].
                 detection of antibiotics at zeptomole level based on target-aptamer   Langmuir, 2022, 38(5): 1791-1796.
                 binding triggered multiple recycling amplification[J]. Biosensors and   [48]  LUAN  Q, GAN N, CAO Y T,  et al. Mimicking an enzyme-based
                 Bioelectronics, 2016, 80: 471-476.                colorimetric aptasensor for antibiotic residue detection in milk
            [29]  WANG X K, SHANG H Z, MA C P, et al. A fluorescence assay for   combining magnetic loop-DNA probes and CHA-assisted target
                 exosome detection based on  bivalent cholesterol anchor triggered   recycling amplification[J]. Journal of Agricultural and Food Chemistry,
                 target conversion and enzyme-free signal amplification[J]. Analytical   2017, 65(28): 5731-5740.
                 Chemistry, 2021, 93(24): 8493-8500.           [49]  CUI X J, LI  R G, LIU X F,  et al. Low-background and visual
            [30]  LING P H, WANG L Y, CHENG S, et al. Ultrasensitive electrochemical   detection of antibiotic based on target-activated colorimetric split
                 biosensor for protein detection based on target-triggering cascade   peroxidase DNAzyme coupled with  dual nicking enzyme signal
                 enzyme-free signal amplification strategy[J]. Analytica Chimica   amplification[J]. Analytica Chimica Acta, 2018, 997: 1-8.
                 Acta, 2022, 1202: 339675.                     [50]  ETEDALI P,  BEHBAHANI  M, MOHABATKAR H,  et al. Field-
            [31]  LV Y X, SUN Y Y, LIU W J, et al. Enzyme-free dual-amplification   usable aptamer-gold nanoparticles-based colorimetric sensor for rapid
                                                   2+
                 assay for colorimetric detection of tetracycline based on Mg -dependent   detection  of white spot  syndrome  virus in shrimp[J]. Aquaculture,
                 DNAzyme assisted catalytic hairpin assembly[J]. Talanta, 2022, 241:   2022, 548: 737628.
                 123214.                                       [51]  CHEN G Y, ZHANG C  Y, YIN S J,  et al. Highly sensitive visual
            [32]  HONG F, CHEN  X X, CAO  Y T,  et al. Enzyme- and label-free   colorimetric sensor for trichlorfon detection based on the inhibition
                 electrochemical aptasensor for kanamycin detection based on double   of metallization of gold nanorods[J]. Spectrochimica Acta, Part A:
                 stir  bar-assisted toehold-mediated strand  displacement reaction for   Molecular and Biomolecular Spectroscopy, 2022, 270: 120850.
                 dual-signal amplification[J]. Biosensors and Bioelectronics, 2018,   [52]  LI J W, LIU Y M, LIN H, et al. Label-free exonuclease I-assisted
                 112: 202-208.                                     signal amplification colorimetric sensor for highly sensitive detection
            [33]  YUAN X C (㶮ᮀ᭒). Advances in optical biosensors for detection   of kanamycin[J]. Food Chemistry, 2021, 347: 128988.
                 of antibiotics[J]. Feed Review (亟᫆ࢇ㻵), 2018, (11): 43-46.   [53]  RAMEZANI  M, DANESH N  M, LAVAEE  P,  et al. A novel
            [34]  YANG  Y X,  GHALANDARI  B, LIN L Y,  et al. A  turn-on   colorimetric  triple-helix molecular switch aptasensor  for  ultrasensitive
                                     2+
                 fluorescence sensor based on Cu  modulated DNA-templated silver   detection of tetracycline[J]. Biosensors and Bioelectronics, 2015, 70:
                 nanoclusters for glyphosate detection  and  mechanism  investigation[J].   181-187.
                 Food Chemistry, 2022, 367: 130617.            [54]  GAUDIN V. Advances in biosensor development for the screening of
            [35]  WANG S, CHEN H Y, XIE H L, et al. A novel thioctic acid-carbon   antibiotic  residues in  food products of  animal origin-A  comprehensive
                                               2+
                 dots fluorescence sensor for the detection of Hg  and thiophanate   review[J]. Biosensors and Bioelectronics, 2017, 90: 363-377.
                 methyl via S-Hg affinity[J]. Food Chemistry, 2021, 346: 128923.   [55]  HOU H, BAI X J, XING C Y, et al. Aptamer-based cantilever array
            [36]  DEHGHANI S, DANESH N M, RAMEZANI M, et al. A label-free   sensors for oxytetracycline detection[J]. Analytical Chemistry, 2013,
                 fluorescent aptasensor for detection of kanamycin based on dsDNA-   85(4): 2010-2014.
                 capped  mesoporous silica nanoparticles and Rhodamine B[J].   [56]  BAI X J, HOU H, ZHAN B L, et al. Label-free detection of kanamycin
                 Analytica Chimica Acta, 2018, 1030: 142-147.      using aptamer-based cantilever array sensor[J]. Biosensors and
            [37]  SUN C Y, SU R F, BIE J X, et al. Label-free fluorescent sensor based   Bioelectronics, 2014, 56: 112-116.
                 on aptamer and thiazole orange for the detection of tetracycline[J].   [57]  YUE F L, LI F L, KONG Q Q, et al. Recent advances in aptamer-
                 Dyes and Pigments, 2018, 149: 867-875.            based sensors  for  aminoglycoside antibiotics detection  and their
            [38]  LUO Z W, WANG Y M, LU X Y, et al. Fluorescent aptasensor for   applications[J]. Science of the  Total Environment, 2021, 762:
                 antibiotic detection using magnetic bead composites coated with gold   143129.
                 nanoparticles and  a nicking enzyme[J]. Analytica Chimica Acta,   [58]  RICHTER L, ALBRYCHT P, KSIEZOPOLSKA-GOCALSKA M, et
                 2017, 984: 177-184.                               al. Fast and efficient deposition of broad range of analytes on substrates
            [39] FENG T T (ۜྤྤ). Research progress and application of nanometer   for  surface enhanced Raman spectroscopy[J]. Biosensors and
                 fluorescence biosensor[J]. Biological Chemical Engineering (⩌➖ࡃ  Bioelectronics, 2020, 156: 112124.
                 ጒ), 2017, 3(6): 78-81.                        [59]  JIANG Y F, SUN  D W, PU H B,  et al. Ultrasensitive analysis of
            [40]  ZHANG W S, ZHONG H D, ZHAO P P, et al. Carbon quantum dot   kanamycin residue in milk by SERS-based aptasensor[J].  Talanta,
                 fluorescent probes for food safety detection: Progress, opportunities   2019, 197: 151-158.
                 and challenges[J]. Food Control, 2022, 133: 108591.   [60]  VURAN B, ULUSOY H I, SARP G,  et al. Determination  of
            [41]  XU J, LI H H, ARUMUGAM S S,  et al.  A turn-on fluorescence   chloramphenicol and tetracycline residues in milk samples by means
                 sensor for rapid sensing of ATP based on luminescence resonance   of nanofiber coated magnetic particles prior to  high-performance
                 energy transfer between upconversion nanoparticles and Cy3 in vivo   liquid chromatography-diode array detection[J]. Talanta, 2021, 230:
                 or vitro[J]. Spectrochimica Acta, Part A: Molecular and Biomolecular   122307.
                 Spectroscopy, 2022, 265: 120341.              [61]  LOUPPIS A P,  KONTOMINAS  M G, PAPASTEPHANOU  C.
            [42]  HE Y H, ZHANG B  Y, FAN Z F. Aptamer based fluorometric   Determination of antibiotic residues in honey by high-performance
                 sulfamethazine  assay based on the use of graphene oxide quantum   liquid chromatography with electronspray ionization  tandem  mass
                 dots[J]. Mikrochim Acta, 2018, 185(3): 163-171.   spectrometry[J]. Food Analytical Methods, 2017, 10(10): 3385-3397.
            [43]  LIU X Y, GAO T F, GAO X, et al. An aptamer based sulfadimethoxine   [62]  FANG B L, HU S, WANG C,  et al. Lateral flow immunoassays
                 assay that uses magnetized upconversion nanoparticles[J]. Microchimica   combining enrichment and colorimetry-fluorescence quantitative
                 Acta, 2017, 184(9): 3557-3563.                    detection of sulfamethazine in milk based on trifunctional magnetic
            [44]  ABEDALWAFA M A, LI Y, NI C F, et al. Colorimetric sensor arrays   nanobeads[J]. Food Control, 2019, 98: 268-273.
   99   100   101   102   103   104   105   106   107   108   109