Page 40 - 《精细化工》2023年第4期
P. 40
g726g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
᱙⮱䨹⻨ၽ⩢䔘ౕⰶⲘ喑ᐭࣾ倅℁ღ䛼Ƞ䪬ᓗ⣜ ι㐡Ꭰ䲏⟣䨹⻨ၽ⩢喟⩞λ㏴➖᱙䏘ࣇᏓ䒰
ᄬপ喑ज̻㏧㏴ጒ͇倅Ꮣ㲺व⮱㏧㏴ധ䨹⻨ၽ⩢ ๔喑㮪㘪ͧ≨ᕔᱽ᫆ӈ䒰๔⮱䉌䒪Ѻ◦喑ѳⰥ℁
ͧⵁ⾣䛺◦喑߈ζᬖᬒ⣝㏧㏴ധ䨹⻨ၽ⩢⮱ λэ㐌䛾ᆋധ⩢ڣҀ⼜℁⩢ღϺ䒰ᄼ喑ຯ҂倅
ጒ͇ࡃȡ䕇䓴䄰ⵁపڲใⵁ⾣ࣾ⣝喑ᄦλ㏧㏴ Ꭰ䲏㏴➖⩢⮱Ҁ⼜℁⩢ღ᭜ᒀݺι㐡Ꭰ䲏⟣䨹⻨
ധ䨹⻨ၽ⩢⮱ⵁࣾ喑͚ప̻ప䭲ٵ䔈ⅡᎠጛ ၽ⩢ᰭ䰭㺮㼐۠⮱䬛䷅ȡ䭺ѻ㏴➖⩢⮱ࣇᏓ喑
ᐯ̺๔喑ڠ䩛ౕλຯ҂䃖పڲ㏧㏴Ю͇γ㼐⣝䭣⃢ 倅㏴➖⩢⮱ളऍჳᏓ喑Ꭰ㶎㏴➖⩢⮱ღ䛼ܳ
ᴁᕔ㏧㏴⩢ࣾᆂ⣝⟣ࣷࣾᆂ喑ຯ҂⾮ⵡϔ͇ ጰ喑Ҭ㏴➖⩢㘪䛼ჳᏓ๔፲ࡴ᭜䔘ܴ䰭㺮㼐۠
ࡃ㐀वࣷጒ͇ࡃឦ䛼ࡃ⩌ϔ喑ᬖᬒ⣝͚పᮧ㘪㏧ ⮱䬛䷅ȡⰥ䒰λ㏑㐡⟣⩢Ხ喑㏴➖⟣⩢Ხ㐡Ꮣ䒰倅喑
㏴৮㵹͇⮱ߌ䒙ಸȡധλₑ喑᱙᪴ᄦ㏧㏴ധ䨹⻨ ऻ㐚̻㏧㏴৮⮱㲺व∂䰭㺮䔈̭ₒᣏ⾣ȡ
ၽ⩢⮱ᰭⵁ⾣䔈㵹γ㐩䔝喑⋢Ⰳ㏑㐡⟣䨹 ᱗Გ喑ắᔢȠᮧ㘪Ƞߌ㘪็ᵤ⮱䨹⻨ၽᰶ᱈
⻨ၽ⩢হι㐡Ꭰ䲏⟣䨹⻨ၽ⩢喑ϻⷠ㏑㐡Ƞⷠ ␎䋠ऱ͗ᕔࡃ䰭Ⅿ喑ຯڡ⮱⩢㜡अ㞟䨹⻨ၽ⩢
㏠ㆠノ㏑㐡Ƞⷠጰহⴠ☜㏠ㆠ❴ͧധᱽܧࣾ喑ᄦ হज⚔Ⱕٲ⩢⮱䨹⻨ၽ⩢ [43] 喑㔹㏧㏴ᱽ᫆ᬍ⪾
ᰭⵁ⾣䔈ᆂ䔈㵹ᕨ㐀ȡᰭऻ喑ᄦ䨹⻨ၽ⩢ႅౕ ᰶߖλ⣝䔆ψज㘪ᕔȡₑใ喑ڠλ䨹⻨ၽ⩢⮱
⮱䬛䷅ࣷࣾᆂा䔈㵹ᆂ᱈喟 ⵁ⾣Ϻัλ侹ბ䭣⃢喑ຯ҂䕇䓴キࢂ⮱∂๔㻱
ڞᕔ䬛䷅喟喍1喎䨹⻨ၽ⩢͚⮱䨹䉌Ხчࣾ⩌ ⩌ϔѻ᱙Ƞ倅ᕔ㘪Ƞᬍᴀ⮱⩢Ხᱽ᫆喑⣝
Ჽ⅏Ƞᮣ⩌䪬হ䧊ࡃぶޜࣺᏁ喑䭺ѻ⩢⮱ᓗ⣜ ㏧㏴ധ䨹⻨ၽ⩢⮱ϔ͇ࡃ喑ᣕߕ䨹⻨ၽ⩢ᄦ䨯
ᄬপȡຯ҂Ԋ៑䨹⩢Ხͧ䰭㺮ڠ∕⮱♓◦喑⣝䭣 ⻨ၽ⩢⮱䘕ܳःА喑ӊᬔ䰭㺮䔈̭ₒߗ߈ȡ
⃢䛴ः⮱ᣗजᕨ㐀ͧ喟Ჱᐧڤᰶܳᅯ㐀Ჱ⮱䨹䉌
࣯㔰᪴⡛喟
Ხ喠ݣิ䨹ധฺव䉌Ხ喠ౕ䨹䉌Ხ̷⊯ᘝᕔᅯ喠ౕ
[1] LIU S, KANG L, KIM J M, et al. Recent advances in vanadium-
⩢㼐䉕͚ᑂڒ䔯ᒀ⮱⌨ߍݯȡ䔆ψ∂㮪㘪㑀㼐
based aqueous rechargeable zinc-ion batteries[J]. Advanced Energy
䨹䉌Ხౕ⩢ᲮࣺᏁ䓴⼸͚ႅౕ⮱䬛䷅喑ѳ䨹⮱㙞ቹ Materials, 2020, 10(25): 223-237.
ࣺᏁϺᬍ∂⣝Ⴧाᣔݣ喑ᩲᎣ᱗㼐۠ڣ᱙䉕䬛䷅ȡ [2] LI H, MA L, HAN C, et al. Advanced rechargeable zinc-based batteries:
喍2喎㏧㏴ധᱽ⮱ϟⅡ/⪼Ⅱᕔ䬛䷅ȡ̭䲏喑⪼Ⅱ Recent progress and future perspectives[J]. Nano Energy, 2019, 62:
550-587.
2+
2+
㶕䲏䭺ѻγ Zn ⮱ព᪐䭨߈喑Ꭳ⩞λⅡव Zn ⮱㙞
[3] JIA X, LIU C, NEALE Z G, et al. Active materials for aqueous zinc ion
⏣㔹Ԋ䃮γ㐀Ჱ⮱⽠Ⴧᕔ喠ओ̭䲏喑⩞λڣ㶕䲏 batteries: Synthesis, crystal structure, morphology, and electrochemistry
Ხ⪼Ⅱ喑⻨ၽহ⩢㢤ᒵ䯫ᣒ䓾ₐᲮ喑ᄩ㜡䨹⻨ၽ⩢ [J]. Chemical Reviews, 2020, 120(15): 7795-7866.
[4] LI R, ZHANG H, ZHENG Q, et al. Porous V 2O 5 yolk-shell microspheres
⮱ߕ߈႓㑀ᚏ喑ᕔ㘪䒰ጛȡₑ喑ຯ҂۳ᣔݣ
for zinc ion battery cathodes: Activation responsible for enhanced
㏧㏴ധᱽ⮱ϟⅡ/⪼Ⅱᕔ㘪喑倅≨ᕔ➖䉕⮱䉌䒪䉕 capacity and rate performance[J]. Journal of Materials Chemistry A,
䛼̻䉌䒪➏Ꮣ喑⣝㏧㏴ധ䨹⻨ၽ⩢ᕔ㘪⮱ᰭ๔ 2020, 8(10): 5186-5193.
ࡃȡ喍3喎ᴁᕔ᭜ᮧ㘪ज⾬ᝡ⩢ၽ䃫ิ⮱䛺㺮࣯ [5] LIU C, MASSE R, NAN X, et al. A Promising cathode for Li-ion
batteries: Li 3V 2(PO 4) 3[J]. Energy Storage Materials, 2016, 4: 15-58.
̭ȡⰛݺ喑๔็᪴⡛͚ग᭜キࢂ⮱᠌̭ψᑜᰟ
[6] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A
⑁喑ౕ̺हᑜᰟ㻿Ꮣ̸≸䄂⩢⮱ᕔ㘪喑Ꭳ̺㘪 perspective[J]. Journal of the American Chemical Society, 2013,
А㶕ڣजႹ㒻ࡦ䙺ᴁᕔ⩢ၽ䃫ิ͚ȡₑ喑䰭ᐧ⿸ 135(4): 1167-1176.
[7] LI Z, PENG Y, LIU C, et al. Oxygen-deficient TiO 2 yolk-shell
̭͗ᴴ۳喑ݑ⩢᭜॓こवᴴ۳ȡ
spheres for enhanced lithium storage properties[J]. Energy &
͗ᕔ䬛䷅喟ϻ㏑㐡⟣ݝι㐡Ꭰ䲏⟣䨹⻨ၽ⩢喑 Environmental Materials, 2021, 4(1): 1-7.
̺ह⮱ധᏂᱽ᫆ڣ͗ᕔ䬛䷅̺ह喑ڤҀᲒ䄡喟 [8] KONAROV A, VORONINA N, JO J H, et al. Present and future
㏑㐡⟣䨹⻨ၽ⩢喟喍1喎Вⷠ㏑㐡ͧധᱽ⮱ฺ perspective on electrode materials for rechargeable zinc-ion batteries
[J]. ACS Energy Letters, 2018, 3(10): 2620-2640.
व⩢Ხ㮪㘪䭺ѻ⩢⮱᱙喑ѳⷠ㏑㐡ӈ⮱⩢ [9] BLANC L E, KUNDU D, NAZAR L F. Scientific challenges for the
ღ䛼ᰶ䭽喑́ڣᑜᰟ݇Ꮣ䒰ጛ喑䯫В⣝ϔ͇ࡃᏁ implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799.
⩕喠喍2喎⣝䭣⃢㏑㐡⟣䨹⻨ၽ⩢ᰡ็ڠ∕λᱽ᫆ [10] TANG B Y, SHAN L T, LIANG S Q, et al. Issues and opportunities
facing aqueous zinc-ion batteries[J]. Energy & Environmental
㘪䛼ႅוᕔ㘪喑䄂ఫᲱま䊲倅㘪䛼ჳᏓ/Ҁ⼜ჳᏓ⮱
Science, 2019, 12(11): 3288-3304.
㏑㐡⩢喑㔹ᔪ⪒γ㏑㐡⩢⮱߈႓Ƞ➏ᏓȠҬ⩕ [11] ZHU Q N, WANG Z Y, WANG J W, et al. Challenges and strategies
⣜ධぶ䬛䷅喠喍3喎㏑㐡⩢⮱䯳हᵤ㑧ͼⵁ⾣喑 for ultrafast aqueous zinc-ion batteries[J]. Rare Metals, 2021, 40(2):
309-328.
倅㘪䛼ႅו⮱㏑㐡⩢Ƞ̻㏧㏴৮倅Ꮣ㲺व⮱㏑㐡
[12] SUBJALEARNDEE N, HE N F, CHENG H, et al. Gamma(SiC)-
⩢Ƞ䪬Ꮣा̭ࡃ́倅⽠Ⴧᕔ⮱㏑㐡⩢ӊᬔ MnO 2/rGO fibered cathode fabrication from wet spinning and dip
䰭㺮䔈̭ₒᣏ⾣ȡ coating techniques for cable-shaped Zn-ion batteries[J]. Advanced