Page 41 - 《精细化工》2023年第4期
P. 41

す 4 ᱌                         ႆ↌͉喑ぶ:  ㏧㏴ധᴁᕔ䨹⻨ၽ⩢↍⮱ⵁ⾣䔈ᆂ                                    g727g


                 Fiber Materials, 2022, 4(3): 457-474.             N-doped carbon  nanowall arrays as an advanced cathode for high
            [13]  MO F, LIANG G,  HUANG Z,  et al.  An overview of fiber-shaped   energy and high power fiber-shaped zinc-ion batteries[J]. Journal of
                 batteries with a focus on multifunctionality, scalability, and technical   Materials Chemistry A, 2019, 7(21): 12979-12986.
                 difficulties[J]. Advanced Materials, 2020, 32(5): 1902151.   [29]  FANG G, ZHOU  J, PAN A,  et al.  Recent advances in aqueous
            [14]  HU P, PAN D A,  ZHANG S,  et al. Mn-Zn soft magnetic ferrite   zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501.
                 nanoparticles synthesized from spent  alkaline Zn-Mn  batteries[J].   [30]  ZHANG Y, LIU  N. Nanostructured  electrode materials for  high-
                 Journal of Alloys and Compounds, 2011, 509(9): 3991-3994.   energy rechargeable  Li, Na and Zn batteriest[J]. Chemistry of
            [15]  SOBIANOWSKA  T A, SZCZEPANIAK W, ZABLOCKA M M.   Materials, 2017, 29(22): 9589.
                 Electrochemical evaluation of manganese reducers-Recovery of Mn   [31]  XUE T, FAN H J. From aqueous Zn-ion battery to Zn-MnO 2 flow
                 from Zn-Mn and Zn-C battery waste[J]. Journal of Power Sources,   battery: A brief story[J]. Journal  of  Energy Chemistry, 2021, 54:
                 2014, 270: 668-674.                               194-201.
            [16]  PENG C H, BAI B S, CHEN Y F. Study on the preparation of Mn-Zn   [32]  WU F, GAO  X, XU X,  et al. MnO 2 nanosheet-assembled hollow
                 soft magnetic ferrite powders from waste Zn-Mn dry  batteries[J].   polyhedron grown  on carbon cloth for flexible aqueous zinc-ion
                 Waste Management (New York), 2008, 28(2): 326-332.   batteries[J]. Chemsuschem, 2020, 13(6): 1537-1545.
            [17]  SOBIANOWSKA  T A, GRUDNIEWSKA K, MACIEJEWSKI P,   [33]  LI F, LIU Y L, WANG G G, et al. The design of flower-like C-MnO 2
                 et al. Removal of Zn(Ĕ) and Mn(Ĕ) by ion flotation from aqueous   nanosheets on carbon cloth toward high-performance flexible
                 solutions derived from Zn-C  and Zn-Mn(Ĕ) batteries leaching[J].   zinc-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(15):
                 Energies, 2021, 14(5): 1335.                      9675-9684.
            [18]  YU X, FU Y, CAI X, et al. Flexible fiber-type zinc-carbon battery   [34]  TAMILSELVAN  M, SREEKANTH T V M, YOO K,  et al.
                 based on carbon fiber electrodes[J]. Nano Energy, 2013, 2(6): 1242-   Binder-free coaxially grown V 6O 13  nanobelts on carbon cloth as
                 1248.                                             cathodes for highly reversible aqueous zinc ion batteries[J]. Applied
            [19]  YU H, LIU G, WANG M, et al. Plasma-assisted surface modification   Surface Science, 2020, 529: 147077.
                 on the electrode interface for flexible fiber-shaped Zn-polyaniline   [35]  DE J M,  CORPUZ  R D, SOMWANGTHANAROJ  A,  et al.
                 batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5820-   Binder-free centimeter-long  V 2O 5 nanofibers on carbon cloth as
                 5830.                                             cathode material for zinc-ion batteries[J]. Energies, 2020, 13(1): 13.
            [20]  GUO D, ZHAO W, PAN F, et al. Block copolymer-derived porous   [36]  ZONG Q,  DU W, LIU C,  et al. Enhanced reversible zinc ion
                 carbon fibers enable high MnO 2 loading and fast charging in aqueous   intercalation in deficient ammonium vanadate for high-performance
                 zinc-ion battery[J]. Batteries & Supercaps, 2022, 5(4): e202100380.   aqueous zinc-ion battery[J]. Nano-Micro Letters, 2021, 13(1): 116.
            [21]  GUAN Q, LI Y, BI X, et al. Dendrite-free flexible fiber-shaped Zn   [37]  DONG  Y, WU Z  S, REN W,  et al. Graphene: A promising 2D
                 battery with long cycle life in water  and air[J]. Advanced Energy   material for electrochemical energy  storage[J]. Science Bulletin,
                 Materials, 2019, 9(41): 1901434.                  2017, 62(10): 724-740.
            [22]  LI H, MA L, HAN C, et al. Advanced rechargeable zinc-based batteries:   [38]  CHEN L,  YANG Z, QIN H,  et al. Advanced  electrochemical
                 Recent progress and future perspectives[J]. Nano Energy, 2019, 62:   performance of ZnMn 2O 4/N-doped graphene hybrid as cathode material
                 550-587.                                          for zinc ion battery[J]. Journal of Power Sources, 2019, 425: 162-169.
            [23]  ZHAO T, ZHANG G, ZHOU F, et al. Toward tailorable Zn-ion textile   [39]  TAO Y, LI Z, TANG L, et al. Nickel and cobalt Co-substituted spinel
                 batteries with high energy density and ultrafast capability: Building   ZnMn 2O 4@N-rGO for increased capacity and stability as a cathode
                 high-performance textile electrode in 3D hierarchical branched design   material for rechargeable aqueous zinc-ion battery[J]. Electrochimica
                 [J]. Small, 2018, 14(36): 1802320.                Acta, 2020, 331; 135296.
            [24]  WANG K, ZHANG X, HANG J, et al. High-performance cable-type   [40]  PANG Q, SUN C, YU Y, et al. H 2V 3O 8 nanowire/graphene electrodes
                 flexible rechargeable Zn battery based on MnO 2@CNT fiber   for aqueous rechargeable zinc ion batteries with high rate capability
                 microelectrode[J]. ACS Applied Materials & Interfaces, 2018,   and large capacity[J]. Advanced Energy Materials, 2018, 8(19):
                 10(29): 24573-24582.                              1810144.
            [25]  LI H, LIU Z,  LIANG G,  et al. Waterproof and tailorable elastic   [41]  YAN  M, HE  P, CHEN Y,  et al.  Water-lubricated intercalation in
                 rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide   V 2O 5•nH 2O for high-capacity and high-rate aqueous rechargeable  zinc
                 electrolyte[J]. ACS Nano, 2018, 12(4): 3140-3148.   batteries[J]. Advanced Materials, 2018, 30(1): 1703725.
            [26]  LI Q, RUI X, CHEN D, et al. A high-capacity ammonium vanadate   [42]  DUAN W, ZHAO M, LI Y,  et al. Excellent rate capability and
                 cathode for zinc-ion battery[J]. Nano-Micro Letters, 2020, 12(1): 67.   cycling stability of novel H 2V 3O 8 doped  with graphene  materials
            [27]  HE B, ZHANG Q, MAN P, et al. Self-sacrificed synthesis of conductive   used in new aqueous zinc-ion batteries[J]. Energy & Fuels, 2020,
                 vanadium-based metal-organic framework nanowire-bundle arrays as   34(3): 3877-3886.
                 binder-free cathodes for high-rate and high-energy-density wearable   [43]  DEKA B B, MATHIESON A, PARK S K, et al. Vanadium dioxide
                 Zn-ion batteries[J]. Nano Energy, 2019, 64:103935.   cathodes for high-rate photo-rechargeable zinc-ion batteries[J]. Advanced
            [28]  HE B, ZHOU Z, MAN P, et al. V 2O 5 nanosheets supported on 3D   Energy Materials, 2021, 11(13): 2100115.
   36   37   38   39   40   41   42   43   44   45   46