Page 41 - 《精细化工》2023年第4期
P. 41
す 4 ႆ͉喑ぶ: ㏧㏴ധᴁᕔ䨹⻨ၽ⩢⮱ⵁ⾣䔈ᆂ g727g
Fiber Materials, 2022, 4(3): 457-474. N-doped carbon nanowall arrays as an advanced cathode for high
[13] MO F, LIANG G, HUANG Z, et al. An overview of fiber-shaped energy and high power fiber-shaped zinc-ion batteries[J]. Journal of
batteries with a focus on multifunctionality, scalability, and technical Materials Chemistry A, 2019, 7(21): 12979-12986.
difficulties[J]. Advanced Materials, 2020, 32(5): 1902151. [29] FANG G, ZHOU J, PAN A, et al. Recent advances in aqueous
[14] HU P, PAN D A, ZHANG S, et al. Mn-Zn soft magnetic ferrite zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501.
nanoparticles synthesized from spent alkaline Zn-Mn batteries[J]. [30] ZHANG Y, LIU N. Nanostructured electrode materials for high-
Journal of Alloys and Compounds, 2011, 509(9): 3991-3994. energy rechargeable Li, Na and Zn batteriest[J]. Chemistry of
[15] SOBIANOWSKA T A, SZCZEPANIAK W, ZABLOCKA M M. Materials, 2017, 29(22): 9589.
Electrochemical evaluation of manganese reducers-Recovery of Mn [31] XUE T, FAN H J. From aqueous Zn-ion battery to Zn-MnO 2 flow
from Zn-Mn and Zn-C battery waste[J]. Journal of Power Sources, battery: A brief story[J]. Journal of Energy Chemistry, 2021, 54:
2014, 270: 668-674. 194-201.
[16] PENG C H, BAI B S, CHEN Y F. Study on the preparation of Mn-Zn [32] WU F, GAO X, XU X, et al. MnO 2 nanosheet-assembled hollow
soft magnetic ferrite powders from waste Zn-Mn dry batteries[J]. polyhedron grown on carbon cloth for flexible aqueous zinc-ion
Waste Management (New York), 2008, 28(2): 326-332. batteries[J]. Chemsuschem, 2020, 13(6): 1537-1545.
[17] SOBIANOWSKA T A, GRUDNIEWSKA K, MACIEJEWSKI P, [33] LI F, LIU Y L, WANG G G, et al. The design of flower-like C-MnO 2
et al. Removal of Zn(Ĕ) and Mn(Ĕ) by ion flotation from aqueous nanosheets on carbon cloth toward high-performance flexible
solutions derived from Zn-C and Zn-Mn(Ĕ) batteries leaching[J]. zinc-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(15):
Energies, 2021, 14(5): 1335. 9675-9684.
[18] YU X, FU Y, CAI X, et al. Flexible fiber-type zinc-carbon battery [34] TAMILSELVAN M, SREEKANTH T V M, YOO K, et al.
based on carbon fiber electrodes[J]. Nano Energy, 2013, 2(6): 1242- Binder-free coaxially grown V 6O 13 nanobelts on carbon cloth as
1248. cathodes for highly reversible aqueous zinc ion batteries[J]. Applied
[19] YU H, LIU G, WANG M, et al. Plasma-assisted surface modification Surface Science, 2020, 529: 147077.
on the electrode interface for flexible fiber-shaped Zn-polyaniline [35] DE J M, CORPUZ R D, SOMWANGTHANAROJ A, et al.
batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5820- Binder-free centimeter-long V 2O 5 nanofibers on carbon cloth as
5830. cathode material for zinc-ion batteries[J]. Energies, 2020, 13(1): 13.
[20] GUO D, ZHAO W, PAN F, et al. Block copolymer-derived porous [36] ZONG Q, DU W, LIU C, et al. Enhanced reversible zinc ion
carbon fibers enable high MnO 2 loading and fast charging in aqueous intercalation in deficient ammonium vanadate for high-performance
zinc-ion battery[J]. Batteries & Supercaps, 2022, 5(4): e202100380. aqueous zinc-ion battery[J]. Nano-Micro Letters, 2021, 13(1): 116.
[21] GUAN Q, LI Y, BI X, et al. Dendrite-free flexible fiber-shaped Zn [37] DONG Y, WU Z S, REN W, et al. Graphene: A promising 2D
battery with long cycle life in water and air[J]. Advanced Energy material for electrochemical energy storage[J]. Science Bulletin,
Materials, 2019, 9(41): 1901434. 2017, 62(10): 724-740.
[22] LI H, MA L, HAN C, et al. Advanced rechargeable zinc-based batteries: [38] CHEN L, YANG Z, QIN H, et al. Advanced electrochemical
Recent progress and future perspectives[J]. Nano Energy, 2019, 62: performance of ZnMn 2O 4/N-doped graphene hybrid as cathode material
550-587. for zinc ion battery[J]. Journal of Power Sources, 2019, 425: 162-169.
[23] ZHAO T, ZHANG G, ZHOU F, et al. Toward tailorable Zn-ion textile [39] TAO Y, LI Z, TANG L, et al. Nickel and cobalt Co-substituted spinel
batteries with high energy density and ultrafast capability: Building ZnMn 2O 4@N-rGO for increased capacity and stability as a cathode
high-performance textile electrode in 3D hierarchical branched design material for rechargeable aqueous zinc-ion battery[J]. Electrochimica
[J]. Small, 2018, 14(36): 1802320. Acta, 2020, 331; 135296.
[24] WANG K, ZHANG X, HANG J, et al. High-performance cable-type [40] PANG Q, SUN C, YU Y, et al. H 2V 3O 8 nanowire/graphene electrodes
flexible rechargeable Zn battery based on MnO 2@CNT fiber for aqueous rechargeable zinc ion batteries with high rate capability
microelectrode[J]. ACS Applied Materials & Interfaces, 2018, and large capacity[J]. Advanced Energy Materials, 2018, 8(19):
10(29): 24573-24582. 1810144.
[25] LI H, LIU Z, LIANG G, et al. Waterproof and tailorable elastic [41] YAN M, HE P, CHEN Y, et al. Water-lubricated intercalation in
rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide V 2O 5•nH 2O for high-capacity and high-rate aqueous rechargeable zinc
electrolyte[J]. ACS Nano, 2018, 12(4): 3140-3148. batteries[J]. Advanced Materials, 2018, 30(1): 1703725.
[26] LI Q, RUI X, CHEN D, et al. A high-capacity ammonium vanadate [42] DUAN W, ZHAO M, LI Y, et al. Excellent rate capability and
cathode for zinc-ion battery[J]. Nano-Micro Letters, 2020, 12(1): 67. cycling stability of novel H 2V 3O 8 doped with graphene materials
[27] HE B, ZHANG Q, MAN P, et al. Self-sacrificed synthesis of conductive used in new aqueous zinc-ion batteries[J]. Energy & Fuels, 2020,
vanadium-based metal-organic framework nanowire-bundle arrays as 34(3): 3877-3886.
binder-free cathodes for high-rate and high-energy-density wearable [43] DEKA B B, MATHIESON A, PARK S K, et al. Vanadium dioxide
Zn-ion batteries[J]. Nano Energy, 2019, 64:103935. cathodes for high-rate photo-rechargeable zinc-ion batteries[J]. Advanced
[28] HE B, ZHOU Z, MAN P, et al. V 2O 5 nanosheets supported on 3D Energy Materials, 2021, 11(13): 2100115.