Page 108 - 精细化工2019年第10期
P. 108
·2074· 精细化工 FINE CHEMICALS 第 36 卷
电纺纤维膜优异的倍率性能主要得益于较高的孔隙 [12] Gao K, Hu X, Dai C, et al. Crystal structures of electrospun PVDF
membranes and its separator application for rechargeable lithium
率、吸液率和离子电导率 [20] 。 metal cells[J]. Materials Science and Engineering: B, 2006, 131(1/2/3):
100-105.
3 结论 [13] Cho T, Sakai T, Tanase S, et al. Electrochemical performances of
polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion
battery[J]. Electrochemical and Solid State Letters, 2007, 10(7):
本文以新型聚芳醚酮 PPEK 为主要原料,添加 159-162.
不同质量分数的 SiO 2 ,采用静电纺丝技术制备了 [14] Xie M, Yin M, Nie G, et al. Poly(aryl ether ketone) composite
membrane as a high-performance lithium-ion batteries separator[J].
PPEK/SiO 2 复合纤维膜,探究了电纺纤维膜的微观 Journal of Polymer Science, Part A: Polymer Chemistry, 2016,
形貌、孔隙率和吸液率、电解液浸润性、热稳定性 54(17): 2714-2721.
[15] Jian Xigao (蹇锡高), Chen Ping (陈平), Liao Gongxiong (廖功雄),
和力学性能;将电纺纤维膜作为隔膜装配成扣式电 et al. Syntheses and properties of novel high performance series poly
池,测试了其电化学性能、循环及倍率性能。与 PP (aromatic ethers) polymers containing phthalazinone moieties[J].
Acta Polymerica Sinica (高分子学报), 2003, (4): 469-475.
隔膜相比,PPEK/SiO 2 复合纤维膜具有更高的孔隙 [16] Qi W, Lu C, Chen P, et al. Electrochemical performances and thermal
率、吸液率,更好的电解液浸润性和热尺寸稳定性, properties of electrospun poly(phthalazinone ether sulfone ketone)
membrane for lithium-ion battery[J]. Materials Letters, 2012, 66(1):
200 ℃热处理 1 h 后热收缩率为 0。与纯 PPEK 制备 239-241.
的电纺纤维膜相比,加入适量的 SiO 2 复合后的纤维 [17] Lu C, Qi W, Li L, et al. Electrochemical performance and thermal
property of electrospun PPESK/PVDF/PPESK composite separator
膜性能得到了改善,当 SiO 2 质量分数为 6%时,综 for lithium-ion battery[J]. Journal of Applied Electrochemistry, 2013,
合性能最佳,满足力学性能的要求,孔隙率和吸液 43(7): 711-720.
[18] Shi R, Bin Y, Yang W, et al. Optimization and characterization of
率分别为 179%和 1031%,离子电导率为 2.63× poly (phthalazinone ether ketone) (PPEK) heat-resistant porous
–3
10 S/cm,1 C 下放电比容量为 332~350 mA·h/g。 fiberous mat by electrospinning[J]. Applied Surface Science, 2016,
379: 282-290.
可见,结合静电纺丝法和 PPEK 的耐高温性,加入 [19] Xia J, Zhang J, Liao G, et al. Copolymerization and blending of poly
SiO 2 进行改性,成功制备了吸液率高、热尺寸稳定 (phthalazinone ether ketone)s to improve their melt processability[J].
Journal of Applied Polymer Science, 2007, 103(4): 2575-2580.
性良好、综合性能优异的 PPEK/SiO 2 复合隔膜,对 [20] Zhang F, Ma X, Cao C, et al. Poly (vinylidene fluoride)/SiO 2
锂离子电池安全性能的提高具有一定的作用。 composite membranes prepared by electrospinning and their
excellent properties for nonwoven separators for lithium-ion
参考文献 batteries[J]. Journal of Power Sources, 2014, 251: 423-431.
[21] Wu X, Lin J, Wang J, et al. Electrospun PVDF/PMMA/SiO 2
[1] Zhao P, Yang J, Shang Y, et al. Surface modification of polyolefin membrane separators for rechargeable lithium-ion batteries[J]. Key
separators for lithium ion batteries to reduce thermal shrinkage Engineering Materials, 2015, 645/646: 1201-1206.
without thickness increase[J]. Journal of Energy Chemistry, 2015, [22] Li Y, Ma X, Deng N, et al. Electrospun SiO 2/PMIA nanofiber
24(2): 138-144. membranes with higher ionic conductivity for high temperature
[2] Yu G, Chen X, Wang A, et al. Carbon@SnS 2 core-shell microspheres resistance lithium-ion batteries[J]. Fibers and Polymers, 2017, 18(2):
for lithium-ion battery anode materials[J]. Ionics, 2018, 24(10): 212-220.
2915-2923. [23] Fu Z, Feng H, Sun C, et al. Influence of solvent type on porosity
[3] Huang B, Pan Z, Su X, et al. Recycling of lithium-ion batteries: structure and properties of polymer separator for the Li-ion
Recent advances and perspectives[J]. Journal of Power Sources, batteries[J]. Journal of Solid State Electrochemistry, 2013, 17(8):
2018, 399: 274-286. 2167-2172.
[4] Zhang Zhixiong (张志雄), Li Li (李莉), Ouyang Xinping (欧阳新 [24] Shao C, Kim H, Gong J, et al. Fiber mats of poly (vinyl
平), et al. Preparation and performance of polyproylene separators alcohol)/silica composite via electrospinning[J]. Materials Letters,
modified by Al 2O 3/PVA layer[J]. Fine Chemicals (精细化工), 2017, 2003, 57(9): 1579-1584.
34(8): 925-929. [25] Sun H, Xu Y, Zhou Y, et al. Preparation of superhydrophobic
[5] Fu Q, Lin G, Chen X, et al. Mechanically reinforced PVDF/ nanocomposite fiber membranes by electrospinning poly (vinylidene
PMMA/SiO 2 composite membrane and its electrochemical properties fluoride)/silane coupling agent modified SiO 2 nanoparticles[J].
as a separator in lithium-ion batteries[J]. Energy Technology, 2018, Journal of Applied Polymer Science, 2017, 134(13): 44501.
6(1): 144-152. [26] Lee J, Lee C, Park K, et al. Synthesis of an Al 2O 3-coated polyimide
[6] Arora P, Zhang Z. Battery separators[J]. Chemical Reviews, 2004, nanofiber mat and its electrochemical characteristics as a separator
104(10): 4419-4462. for lithium ion batteries[J]. Journal of Power Sources, 2014, 248:
[7] Zhang S. A review on the separators of liquid electrolyte Li-ion 1211-1217.
batteries[J]. Journal of Power Sources, 2007, 164(1): 351-364. [27] Barbosa J, Dias J, Lanceros-Méndez S, et al. Recent advances in poly
[8] Huang X. Separator technologies for lithium-ion batteries[J]. Journal (vinylidene fluoride) and its copolymers for lithium-ion battery
of Solid State Electrochemistry, 2011, 15(4): 649-662. separators[J]. Membranes, 2018, 8(3): 45.
[9] Lee H, Yanilmaz M, Toprakci O, et al. A review of recent [28] Fu Q, Lin G, Chen X, et al. Mechanically reinforced PVDF/
developments in membrane separators for rechargeable lithium-ion PMMA/SiO 2 composite membrane and its electrochemical properties
batteries[J]. Energy & Environment Science, 2014, 7(12): 3857- as a separator in lithium-ion batteries[J]. Energy Technology, 2018,
3886. 6(1): 144-152.
[10] Pampal E, Stojanovska E, Simon B, et al. A review of nanofibrous [29] Kalnaus S, Wang Y, Turner J A. Mechanical behavior and failure
structures in lithium ion batteries[J]. Journal of Power Sources, 2015, mechanisms of Li-ion battery separators[J]. Journal of Power
300: 199-215. Sources, 2017, 348: 255-263.
[11] Jung J, Lee C, Yu S, et al. Electrospun nanofibers as a platform for [30] Zahn R, Lagadec M, Hess M, et al. Improving ionic conductivity and
advanced secondary batteries: A comprehensive review[J]. Journal of lithium-ion transference number in lithium-ion battery separators[J].
Materials Chemistry A, 2016, 4(3): 73-75. ACS Applied Materials & Interfaces, 2016, 8(48): 32637-32642.