Page 108 - 精细化工2019年第10期
P. 108

·2074·                            精细化工   FINE CHEMICALS                                  第 36 卷

            电纺纤维膜优异的倍率性能主要得益于较高的孔隙                             [12]  Gao K, Hu X, Dai C, et al. Crystal structures of electrospun PVDF
                                                                   membranes  and  its  separator  application  for  rechargeable  lithium
            率、吸液率和离子电导率            [20] 。                          metal cells[J]. Materials Science and Engineering: B, 2006, 131(1/2/3):
                                                                   100-105.
            3   结论                                             [13]  Cho T, Sakai T, Tanase S, et al. Electrochemical performances of
                                                                   polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion
                                                                   battery[J].  Electrochemical  and  Solid  State  Letters,  2007,  10(7):
                 本文以新型聚芳醚酮 PPEK 为主要原料,添加                           159-162.
            不同质量分数的 SiO 2 ,采用静电纺丝技术制备了                         [14]  Xie M,  Yin  M, Nie G,  et al.  Poly(aryl  ether  ketone)  composite
                                                                   membrane  as  a  high-performance  lithium-ion batteries  separator[J].
            PPEK/SiO 2 复合纤维膜,探究了电纺纤维膜的微观                           Journal  of  Polymer  Science,  Part  A:  Polymer  Chemistry,  2016,
            形貌、孔隙率和吸液率、电解液浸润性、热稳定性                                 54(17): 2714-2721.
                                                               [15]  Jian Xigao (蹇锡高), Chen Ping (陈平), Liao Gongxiong (廖功雄),
            和力学性能;将电纺纤维膜作为隔膜装配成扣式电                                 et al. Syntheses and properties of novel high performance series poly
            池,测试了其电化学性能、循环及倍率性能。与 PP                               (aromatic  ethers)  polymers  containing  phthalazinone  moieties[J].
                                                                   Acta Polymerica Sinica (高分子学报), 2003, (4): 469-475.
            隔膜相比,PPEK/SiO 2 复合纤维膜具有更高的孔隙                       [16]  Qi W, Lu C, Chen P, et al. Electrochemical performances and thermal
            率、吸液率,更好的电解液浸润性和热尺寸稳定性,                                properties  of  electrospun  poly(phthalazinone  ether  sulfone  ketone)
                                                                   membrane for lithium-ion battery[J]. Materials Letters, 2012, 66(1):
            200  ℃热处理 1 h 后热收缩率为 0。与纯 PPEK 制备                      239-241.
            的电纺纤维膜相比,加入适量的 SiO 2 复合后的纤维                        [17]  Lu C, Qi W, Li L, et al. Electrochemical performance and thermal
                                                                   property  of  electrospun  PPESK/PVDF/PPESK  composite  separator
            膜性能得到了改善,当 SiO 2 质量分数为 6%时,综                           for lithium-ion battery[J]. Journal of Applied Electrochemistry, 2013,
            合性能最佳,满足力学性能的要求,孔隙率和吸液                                 43(7): 711-720.
                                                               [18]  Shi  R,  Bin  Y,  Yang  W,  et al.  Optimization  and  characterization  of
            率分别为 179%和 1031%,离子电导率为 2.63×                          poly  (phthalazinone  ether  ketone)  (PPEK)  heat-resistant  porous
              –3
            10  S/cm,1  C 下放电比容量为 332~350 mA·h/g。                  fiberous mat by  electrospinning[J]. Applied Surface Science, 2016,
                                                                   379: 282-290.
            可见,结合静电纺丝法和 PPEK 的耐高温性,加入                          [19]  Xia J, Zhang J, Liao G, et al. Copolymerization and blending of poly
            SiO 2 进行改性,成功制备了吸液率高、热尺寸稳定                             (phthalazinone ether ketone)s to improve their melt processability[J].
                                                                   Journal of Applied Polymer Science, 2007, 103(4): 2575-2580.
            性良好、综合性能优异的 PPEK/SiO 2 复合隔膜,对                      [20]  Zhang  F,  Ma  X,  Cao  C,  et al.  Poly  (vinylidene  fluoride)/SiO 2
            锂离子电池安全性能的提高具有一定的作用。                                   composite  membranes  prepared  by  electrospinning  and  their
                                                                   excellent  properties  for  nonwoven  separators  for  lithium-ion
            参考文献                                                   batteries[J]. Journal of Power Sources, 2014, 251: 423-431.
                                                               [21]  Wu  X,  Lin  J,  Wang  J,  et al.  Electrospun  PVDF/PMMA/SiO 2
            [1]   Zhao P, Yang J, Shang Y, et al. Surface modification of polyolefin   membrane  separators  for  rechargeable  lithium-ion  batteries[J].  Key
                 separators  for  lithium  ion  batteries  to  reduce  thermal  shrinkage   Engineering Materials, 2015, 645/646: 1201-1206.
                 without  thickness  increase[J].  Journal  of  Energy  Chemistry,  2015,   [22]  Li  Y,  Ma  X,  Deng  N,  et al.  Electrospun  SiO 2/PMIA  nanofiber
                 24(2): 138-144.                                   membranes  with  higher  ionic  conductivity  for  high  temperature
            [2]   Yu G, Chen X, Wang A, et al. Carbon@SnS 2 core-shell microspheres   resistance lithium-ion batteries[J]. Fibers and Polymers, 2017, 18(2):
                 for  lithium-ion  battery  anode  materials[J].  Ionics,  2018,  24(10):   212-220.
                 2915-2923.                                    [23]  Fu  Z,  Feng  H,  Sun  C,  et al.  Influence  of  solvent  type  on  porosity
            [3]   Huang  B, Pan Z,  Su X,  et al.  Recycling  of  lithium-ion  batteries:   structure  and  properties  of  polymer  separator  for  the  Li-ion
                 Recent  advances  and  perspectives[J].  Journal  of  Power  Sources,   batteries[J].  Journal  of  Solid  State  Electrochemistry,  2013,  17(8):
                 2018, 399: 274-286.                               2167-2172.
            [4]   Zhang  Zhixiong  (张志雄), Li  Li (李莉),  Ouyang  Xinping  (欧阳新  [24]  Shao  C,  Kim  H,  Gong  J,  et al.  Fiber  mats  of  poly  (vinyl
                 平), et al.  Preparation  and  performance  of  polyproylene  separators   alcohol)/silica  composite  via  electrospinning[J].  Materials  Letters,
                 modified by Al 2O 3/PVA layer[J]. Fine Chemicals (精细化工), 2017,   2003, 57(9): 1579-1584.
                 34(8): 925-929.                               [25]  Sun  H,  Xu  Y,  Zhou  Y,  et al.  Preparation  of  superhydrophobic
            [5]   Fu Q,  Lin  G, Chen  X,  et al.  Mechanically  reinforced  PVDF/   nanocomposite fiber membranes by electrospinning poly (vinylidene
                 PMMA/SiO 2 composite membrane and its electrochemical properties   fluoride)/silane  coupling  agent  modified  SiO 2  nanoparticles[J].
                 as a separator in lithium-ion batteries[J]. Energy Technology, 2018,   Journal of Applied Polymer Science, 2017, 134(13): 44501.
                 6(1): 144-152.                                [26]  Lee J, Lee C, Park K, et al. Synthesis of an Al 2O 3-coated polyimide
            [6]   Arora  P,  Zhang  Z.  Battery  separators[J].  Chemical  Reviews,  2004,   nanofiber  mat  and  its  electrochemical  characteristics  as  a  separator
                 104(10): 4419-4462.                               for  lithium  ion  batteries[J].  Journal  of  Power  Sources,  2014,  248:
            [7]   Zhang  S.  A  review  on  the  separators  of  liquid  electrolyte  Li-ion   1211-1217.
                 batteries[J]. Journal of Power Sources, 2007, 164(1): 351-364.   [27]  Barbosa J, Dias J, Lanceros-Méndez S, et al. Recent advances in poly
            [8]   Huang X. Separator technologies for lithium-ion batteries[J]. Journal   (vinylidene  fluoride)  and  its  copolymers  for  lithium-ion  battery
                 of Solid State Electrochemistry, 2011, 15(4): 649-662.   separators[J]. Membranes, 2018, 8(3): 45.
            [9]   Lee  H,  Yanilmaz  M,  Toprakci  O,  et al.  A  review  of  recent   [28]  Fu  Q, Lin G,  Chen X,  et al.  Mechanically  reinforced  PVDF/
                 developments  in  membrane  separators  for  rechargeable  lithium-ion   PMMA/SiO 2 composite membrane and its electrochemical properties
                 batteries[J].  Energy  &  Environment  Science,  2014,  7(12):  3857-   as a separator in lithium-ion batteries[J]. Energy Technology, 2018,
                 3886.                                             6(1): 144-152.
            [10]  Pampal E, Stojanovska E, Simon B, et al. A review of nanofibrous   [29]  Kalnaus  S,  Wang  Y,  Turner  J  A.  Mechanical  behavior  and  failure
                 structures in lithium ion batteries[J]. Journal of Power Sources, 2015,   mechanisms  of  Li-ion  battery  separators[J].  Journal  of  Power
                 300: 199-215.                                     Sources, 2017, 348: 255-263.
            [11]  Jung J, Lee C, Yu S, et al. Electrospun nanofibers as a platform for   [30]  Zahn R, Lagadec M, Hess M, et al. Improving ionic conductivity and
                 advanced secondary batteries: A comprehensive review[J]. Journal of   lithium-ion transference number in lithium-ion battery separators[J].
                 Materials Chemistry A, 2016, 4(3): 73-75.         ACS Applied Materials & Interfaces, 2016, 8(48): 32637-32642.
   103   104   105   106   107   108   109   110   111   112   113