Page 114 - 精细化工2019年第10期
P. 114
·2080· 精细化工 FINE CHEMICALS 第 36 卷
饱和,随后逐渐形成交联现象,从而导致 PDI 呈现 characterisation of glucose-functional glycopolymers and gold
继续增大的趋势,如图 7b 所示。图 7c 为 PDO-1 胶 nanoparticles: Study of their potential interactions with ovine red
blood cells[J]. Carbohydr Res, 2015, 405: 47-54.
束与 ConA 相互识别前后粒径的变化情况。结果表 [9] Shao C, Li X, Pei Z, et al. Facile fabrication of glycopolymer-based
明,随着 PDO-1 浓度的增加,PDO-1 与 ConA 相互 iron oxide nanoparticles and their applications in carbohydrate-lectin
interaction and targeted cell imaging[J]. Polymer Chemistry, 2016,
识别后,粒径明显增大。说明糖-蛋白的识别与 7(6): 1337-1344.
PDO-1 浓度密切相关,浓度过高或过低均会导致聚 [10] Tomonari T, Masaru O. Lectin and temperature dual-responsive
合物胶束本身粒径过大或过小,与凝集素结合的程 glycosylated block copolymers synthesized by consecutive RAFT
polymerization reactions[J]. Bulletin of the Chemical Society of
度会相对降低,因为这种情况下存在尺寸效应和空 Japan, 2018, 91(5): 754-760.
[1]
间位阻效应 。 [11] Ting S R S, Chen G, Stenzel M H. Synthesis of glycopolymers and
their multivalent recognitions with lectins[J]. Polymer Chemistry,
2010, 1(9): 1392-1412.
3 结论 [12] Sun K, Xu M R, Zhou K C, et al. Thermoresponsive deblock
glycopolymer by RAFT polymerization for lectin recognition[J].
采用酶促法与 RAFT 聚合相结合的技术制备了 Materials Science and Engineering: C, 2016, 68: 172-176.
结构可控的含葡萄糖基温敏无规聚合物 P(DEGMA- [13] Xu M R, Shi M, Bremner D H, et al. Facile fabrication of
P(OVNG-co-NVCL) thermoresponsive double-hydrophilic
co-OVNGlu)。红外光谱及核磁共振氢谱表明该聚合 glycopolymer nanofibers for sustained drug release[J]. Colloids and
物已成功制备;紫外测试结果表明,含葡萄糖的无 Surfaces B: Biointerfaces, 2015, 135: 209-216.
[14] Sebastian D, Espinold C G, Kunz H. Synthetic glycopeptides for the
规聚合物对凝集素 ConA 具有一定的结合能力,证
development of autitumour vaccines[J]. Australian Journal of
明葡萄糖酯单体参与 RAFT 聚合后依然保持了糖基 Chemistry, 2003, 56: 519-543.
与 ConA 的结合。动态光散射仪表征结果显示,识 [15] Álvarez-Paino M, Bordegé V, Cuervo-Rodríguez R, et al.
Well-defined glycopolymers via RAFT polymerization: stabilization
别后 D h 明显增大,且随着结合时间的延长,在 of gold nanoparticles[J]. Macromolecular Chemistry and Physics,
20 min 时,聚合物与凝集素的识别达到饱和,随后 2014, 215(19): 1915-1924.
[16] Cuervorodriguez R, Bordege V, Fernandezgarcia M. Synthesis and
逐渐形成交联。该方法可为糖-蛋白的相互识别提供
characterization of novel glycopolymers based on ethyl
一定的理论参考。 α-hydroxymethylacrylate[J]. Carbohydrate Polymers, 2007, 68(1):
89-94.
参考文献: [17] Quan J, Shen F W, Cai H, et al. Galactose-functionalized
double-hydrophilic block glycopolymers and their thermoresponsive
[1] Ting S R S, Min E H, Escale P, et al. Lectin recognizable
self-assembly dynamics[J]. Langmuir, 2018, 34: 10721-10731.
biomaterials synthesized via nitroxide-mediated polymerization of a
[18] Tu Y F, Wan X H, Zhang Q F, et al. Self-assembled nanostructure of
methacryloyl galactose monomer[J]. Macromolecules, 2009, 42(24):
a novel coil-rod diblock copolymer in dilute solution[J]. Journal of
9422-9434.
American Chemistry Society, 2000, 122(41): 10201-10205.
[2] Sunasee R, Narain R. Glycopolymers and glyconanoparticles in [19] Xu Muru (徐慕儒), Sun Kan (孙衎), Wu Hanbing (巫寒冰), et al.
biomolecular recognition processes and vaccine development[J]. Synthesis of thermosensitive double hydrophilic galactose-containing
Macromolecular Bioscience, 2013, 13(1): 9-27. copolymer and self-assembly of micelles[J]. Fine Chemicals (精细化
[3] Miura Y, Hoshino Y, Seto H. Glycopolymer nanobiotechnology[J]. 工), 2014, 31(11): 1314-1318.
Chemical Reviews, 2016, 116(4): 1673-1692. [20] Sun Kan (孙衎), Shi Meng (石萌), Wu Hanbing (巫寒冰), et al.
[4] Basuki J S, Esser L, Duong H T T, et al. Magnetic nanoparticles with preparation of temperature-sensitive sugar-containing copolymer by
diblockglycopolymer shells give lectin concentration-dependent MRI RAFT polymerization[J]. Fine Chemicals (精细化工), 2013, 30(12):
signals and selective cell uptake[J]. Chemical Science, 2013, 5(2): 1321-1325.
715-726. [21] Xu Muru (徐慕儒). Biological characteristics of galactose functionalized
[5] Tanaka T, Inoue G, Shoda S I, et al. Protecting-group-free synthesis temperature sensitive double hydrophilic block copolymer
of glycopolymers bearing thioglycosides via one-pot monomer micelles[D]. Shanghai: Donghua University (东华大学), 2016.
synthesis from free saccharides[J]. Journal of Polymer Science, Part [22] Kutcherlapati S N R, Koyilapu R, Boddu U M R, et al.
A: Polymer Chemistry, 2015, 52(24): 3513-3520. Glycopolymer-grafted nanoparticles: Synthesis using RAFT
[6] Seto H, Kamba S, Kondo T, et al. Metal mesh device sensor polymerization and binding study with lectin[J]. Macromolecules,
immobilized with a trimethoxysilane-containing glycopolymer for 2017, 50(18): 7309-7320.
label-free detection of proteins and bacteria[J]. 2016, 6(15): [23] Lutz J F. Polymerization of oligo (ethylene glycol) (meth) acrylates:
13234-13241. Toward new generations of smart biocompatible materials[J]. Journal
[7] Ehe C V D, Weber C, Wagner M, et al. Synthesis of of Polymer Science, Part A: Polymer Chemistry, 2008, 46(11):
thermoresponsive glycopolymers combining RAFT polymerization, 3459-3470.
thiol-enereaction, and subsequent immobilization onto solid [24] Kabir S R, Reza M A. Antibacterial activity of Kaempferia rotunda
supports[J]. Macromolecular Chemistry & Physics, 2014, 215(13): rhizome lectin and its induction of apoptosis in Ehrlich ascites
1306-1318. carcinoma cells[J]. Appl Biochem Biotechnol, 2014, 172(6): 2866-
[8] Wilkins L E, Phillips D J, Deller R C, et al. Synthesis and 2876.