Page 22 - 精细化工2019年第12期
P. 22
·2350· 精细化工 FINE CHEMICALS 第 36 卷
缩聚法是主要方法。当前催化剂以有机钛和有机锡 comparison of thermal behavior and solid state structure with its
terephthalate and naphthalate homologues[J]. Polymer, 2015, 62:
为主,酶和有机碱是催化剂的研究热点。2,5-呋喃二
28-38.
甲酸聚酯在热学性能(玻璃化转变温度、热稳定性) [13] Zhu J H, Cai J L, Xie W C, et al. Poly (butylene 2,5-furan
dicarboxylate), a biobased alternative to PBT: synthesis, physical
和力学性能(杨氏模量、抗拉强度)上与相应对苯
properties, and crystal structure[J]. Macromolecules, 2013, 46(3):
二甲酸基聚酯接近,2,5-呋喃二甲酸聚酯对 CO 2 、 796-804.
O 2 和 H 2 O 的阻隔性优于对苯二甲酸基聚酯,但 2,5- [14] Ma J P, Yu X F, Xu J, et al. Synthesis and crystallinity of poly
(butylene 2,5-furandicarboxylate)[J]. Polymer, 2012, 53(19): 4145-4151.
呋喃二甲酸聚酯的断裂伸长率较低,不利于后续加 [15] Terzopoulou Z, Tsanaktsis V, Nerantzaki M, et al. Decomposition
工和应用。为改善 2,5-呋喃二甲酸聚酯的力学和热 mechanism of polyesters based on 2,5-furandicarboxylic acid and
aliphatic diols with medium and long chain methylene groups[J].
学等性能,采取了无机纳米改性、扩链改性和共聚 Polymer Degradation and Stability, 2016, 132: 127-136.
改性这 3 种方法,其中共聚是最有效的办法。然而, [16] Tsanaktsis V, Terzopoulou Z, Nerantzaki M, et al. New poly (pentylene
furanoate) and poly (heptylene furanoate) sustainable polyesters from
目前的共聚改性单体中只有 1,4-环己烷二甲醇可以 diols with odd methylene groups[J]. Materials Letters, 2016, 178:
取得较好的综合改性效果。柔性适中的共聚单体是 64-67.
[17] Tsanaktsis V, Papageorgiou G Z, Bikiaris D N. A facile method to
2,5-呋喃二甲酸聚酯共聚改性成功的关键。可以预
synthesize high-molecular-weight biobased polyesters from 2,5-
见,一旦 2,5-呋喃二甲酸基共聚物的热学、热稳定 furandicarboxylic acid and long-chain diols[J]. Journal of Polymer
性、力学性能和气体阻隔性能达到相应对苯二甲酸 Science, Part A: Polymer Chemistry, 2015, 53(22): 2617-2632.
[18] Terzopoulou Z, Tsanaktsis V, Nerantzaki M, et al. Thermal degradation
基聚酯的水平,就可实现生物基聚酯替代石油基聚 of biobased polyesters: Kinetics and decomposition mechanism of
酯达到绿色可持续的目标。 polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic
diols[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117:
162-175.
参考文献:
[19] Soares M J, Dannecker P K, Vilela C, et al. Poly (1,20-eicosanediyl
[1] Werpy T A, Holladay J E, White J F. Top value added chemicals from 2,5-furandicarboxylate), a biodegradable polyester from renewable
biomass I. results of screening for potential candidates from sugars resources[J]. European Polymer Journal, 2017, 90: 301-311.
and synthesis gas[R]. Synthetic Fuels, 2004: 1-67. [20] van Berkel J G, Guigo N, Visser H A, et al. Chain structure and
[2] Zhou Jiadong (周佳栋), Cao Fei (曹飞), Yu Zuolong (余作龙), et al. molecular weight dependent mechanics of poly (ethylene 2,
Research progress in preparation and application of bio-based 2, 5-furandicarboxylate) compared to poly (ethylene terephthalate)[J].
5-furandicarboxylic acid as polyester monomer[J]. Acta Polymerica Macromolecules, 2018, 51(21): 8539-8549.
Sinica (高分子学报) , 2016, (1): 1-13. [21] Gubbels E, Jasinska-Walc L, Koning C E. Synthesis and characterization
[3] Tong X L, Ma Y, Li Y D. Biomass into chemicals: Conversion of of novel renewable polyesters based on 2,5-furandicarboxylic acid
sugars to furan derivatives by catalytic processes[J]. Applied and 2,3-butanediol[J]. Journal of Polymer Science, Part A-Polymer
Catalysis A: General, 2010, 385(1/2): 1-13. Chemistry, 2013, 51(4): 890-898.
[4] James G N D, James L. Improvements in polymers: GB621971[P]. [22] Wu L L, Mascal M, Farmer T J, et al. Electrochemical coupling of
1946-11-12. biomass-derived acids: New C-8 platforms for renewable polymers
[5] Gandini A, Silvestre A J D, Neto C P, et al. The furan counterpart of and fuels[J]. Chemsuschem, 2017, 10(1): 166-170.
poly (ethylene terephthalate): An alternative material based on [23] Terzopoulou Z, Kasmi N, Tsanaktsis V, et al. Synthesis and
renewable resources[J]. Journal of Polymer Science, Part A: Polymer characterization of bio-based polyesters: Poly (2-methyl-1,3-
Chemistry, 2009, 47(1): 295-298. propylene-2,5-furanoate), poly (isosorbide-2,5-furanoate), poly
[6] Gandini A. Furans as offspring of sugars and polysaccharides and (1,4-cyclohexanedimethylene-2,5-furanoate)[J]. Materials (Basel),
2017, 10(7): 801-820.
progenitors of a family of remarkable polymers: A review of recent [24] Tsanaktsis V, Terzopoulou Z, Exarhopoulos S, et al. Sustainable,
progress[J]. Polymer Chemistry, 2010, 1(3): 245-251.
[7] Gomes M, Gandini A, Silvestre A J D, et al. Synthesis and eco-friendly polyesters synthesized from renewable resources:
Preparation and thermal characteristics of poly (dimethyl-propylene
characterization of poly (2, 5-furan dicarboxylate)s based on a furanoate)[J]. Polymer Chemistry, 2015, 6(48): 8284-8296.
variety of diols[J]. Journal of Polymer Science, Part A: Polymer [25] Moore J A, Kelly J E K. Polyesters derived from furan and
Chemistry, 2011, 49(17): 3759-3768. tetrahydrofuran nuclei[J]. Macromolecules, 1978, 11(3): 568-573.
[8] Eerhart A J J E, Faaij A P C, Patel M K. Replacing fossil based PET [26] Kanetaka Y, Yamazaki S, Kimura K. High performance polyesters
with biobased PEF; process analysis, energy and GHG balance[J]. prepared from bio‐based 2,5‐furandicarboxylic acid[J]. Journal of
Energy & Environmental Science, 2012, 5(4): 6407-6422. Fiber Science and Technology, 2016, 72(2): 54-60.
[9] Yu Z L, Cao F, Zhang Q G, et al. Synthesis, characterization and [27] Moore J A, Kelly J E. Polyhydroxymethylfuroate[poly (2,5-
thermal properties of bio-based poly (ethylene 2,5-furan dicarboxylate) furandiylcarbonyloxymethylene)][J]. Journal of Polymer Science,
[J]. Journal of Macromolecular Science,Part B-Physics, 2016, 55(12): Part A-Polymer Chemistry, 1984, 22(3): 863-864.
1135-1145. [28] Storbeck R, Ballauff M. Synthesis and properties of polyesters based
[10] Wu J P, Xie H Z, Wu L B, et al. DBU-catalyzed biobased poly on 2,5-furandicarboxylic acid and 1,4/3,6-dianhydrohexitols[J].
(ethylene 2,5-furandicarboxylate) polyester with rapid melt crystallization: Polymer, 1993, 34(23): 5003-5006.
synthesis, crystallization kinetics and melting behavior[J]. RSC Adv, [29] Gopalakrishnan P, Narayan-Sarathy S, Ghosh T, et al. Synthesis and
2016, 6(103): 101578-101586. characterization of bio-based furanic polyesters[J]. Journal of
[11] Vannini M, Marchese P, Celli A, et al. Fully biobased poly (propylene Polymer Research, 2013, 21(1): 340-349.
2,5-furandicarboxylate) for packaging applications: Excellent barrier [30] Wu J, Eduard P, Thiyagarajan S, et al. Semi-aromatic polyesters
properties as a function of crystallinity[J]. Green Chemistry, 2015, based on a carbohydrate-derived rigid diol for engineering plastics[J].
17(8): 4162-4166. Chem Sus Chem, 2015, 8(1): 67-72.
[12] Papageorgiou G Z, Papageorgiou D G, Tsanaktsis V, et al. Synthesis [31] Matos M, Sousa A F, Silvestre A J D. Improving the thermal properties
of the bio-based polyester poly (propylene 2,5-furan dicarboxylate). of poly (2,5-furandicarboxylate)s using cyclohexylene moieties: A