Page 23 - 精细化工2019年第12期
P. 23

第 12 期                      王贤松,等:  生物基 2,5-呋喃二甲酸聚酯的研究进展                                ·2351·


                 comparative study[J]. Macromolecular Chemistry and Physics, 2017,   [50]  Wu  B  S,  Xu  Y  T,  Bu  Z  Y,  et al.  Biobased  poly  (butylene
                 218(5): 1600492-1600502.                          2,5-furandicarboxylate)  and  poly  (butylene  adipate-co-butylene
            [32]  Wang J G, Liu X Q, Zhang Y J, et al. Modification of poly (ethylene   2,5-furandicarboxylate)s:  From  synthesis  using  highly  purified
                 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence   2,5-furandicarboxylic  acid  to  thermo-mechanical  properties[J].
                 of  composition  on  mechanical  and  barrier  properties[J].  Polymer,   Polymer, 2014, 55(16): 3648-3655.
                 2016, 103: 1-8.                               [51]  Burgess S K, Kriegel R M, Koros W J. Carbon dioxide sorption and
            [33]  Hong  S,  Min  K  D,  Nam  B  U,  et al.  High  molecular  weight  bio   transport in amorphous poly (ethylene furanoate)[J]. Macromolecules,
                 furan-based co-polyesters for food packaging applications: Synthesis,   2015, 48(7): 2184-2193.
                 characterization and solid-state polymerization[J]. Green Chemistry,   [52]  Burgess S K, Mikkilineni D S, Yu D B, et al. Water sorption in poly
                 2016, 18(19): 5142-5150.                          (ethylene furanoate) compared to poly (ethylene terephthalate). part
            [34]  Diao  L  C,  Su  K  M,  Li  Z  H,  et al.  Furan-based  co-polyesters  with   2: kinetic sorption[J]. Polymer, 2014, 55(26): 6870-6882.
                 enhanced   thermal   properties:   Poly   (1,4-butylene-co-1,4-   [53]  Burgess  S  K,  Karvan  O,  Johnson  J  R,  et al.  Oxygen  sorption  and
                 cyclohexanedimethylene-2,5-furandicarboxylic  acid)[J].  RSC  Adv,   transport in amorphous poly (ethylene furanoate)[J]. Polymer, 2014,
                 2016, 6(33): 27632-27639.                         55(18): 4748-4756.
            [35]  Hachihama Y, Shono T, Hyono K. Syntheses of polyesters containing   [54]  de Jong E, Dam M A, Sipos L, et al. Furandicarboxylic acid (FDCA),
                 a furan ring[J]. Technology Reports of the Osaka University, 1958, 8:   a versatile building block for a very interesting class of polyesters[J].
                 475-480.                                          ACS Symposium Series, 2012, 1105(13): 1-13.
            [36]  Jiang M, Liu Q, Zhang Q, et al. A series of furan-aromatic polyesters   [55]  Papageorgiou  G  Z,  Tsanaktsis  V,  Bikiaris  D  N.  Synthesis  of poly
                 synthesized  via  direct  esterification  method  based  on  renewable   (ethylene  furandicarboxylate)  polyester  using  monomers  derived
                 resources[J]. Journal of Polymer Science, Part A: Polymer Chemistry,   from  renewable  resources:  thermal  behavior  comparison  with  PET
                 2012, 50(5): 1026-1036.                           and PEN[J]. Phys Chem Chem Phys, 2014, 16(17): 7946-7958.
            [37]  Knoop  R  J  I,  Vogelzang  W,  van  Haveren  J,  et al.  High  molecular   [56]  Burgess S K,  Leisen J E,  Kraftschik B  E,  et al.  Chain  mobility,
                 weight poly (ethylene-2,5-furanoate), critical aspects in synthesis and   thermal,  and  mechanical  properties  of  poly  (ethylene  furanoate)
                 mechanical  property  determination[J].  Journal  of  Polymer  Science,   compared to poly (ethylene terephthalate)[J]. Macromolecules, 2014,
                 Part A: Polymer Chemistry, 2013, 51(19): 4191-4199.     47(4): 1383-1391.
            [38]  Jiang  Y,  Woortman  A  J  J,  Alberda  van  Ekenstein  G  O  R, et al.  A   [57]  Gert-Jan  M,  Gruter  L  S,  Matheus  A  D.  Accelerating  research into
                 biocatalytic  approach  towards  sustainable  furanic–aliphatic  polyesters   bio-based  FDCA-polyesters  by  using  small  scale  parallel  film
                 [J]. Polymer Chemistry, 2015, 6(29): 5198-5211.     reactors[J]. Combinatorial Chemistry & High Throughput Screening,
            [39]  Martino  L,  Niknam  V,  Guigo  N,  et al.  Morphology  and  thermal   2012, 15(2): 180-188.
                 properties of novel clay-based poly (ethylene 2,5-furandicarboxylate)   [58]  Pfister  D,  Storti  G,  Tancini  F,  et al.  Synthesis  and  ring-opening
                 (PEF) nanocomposites[J]. RSC Adv, 2016, 6(64): 59800-59807.     polymerization  of  cyclic  butylene  2,5-furandicarboxylate[J].
            [40]  Stoclet G, Gobius du S G, Yeniad B, et al. Isothermal crystallization   Macromolecular Chemistry and Physics, 2015, 216(21): 2141-2146.
                 and  structural  characterization  of  poly  (ethylene-2,5-furanoate)[J].   [59]  Laszlo  Sipos.  Process  for  preparing  a  polymer  having  a
                 Polymer, 2015, 72: 165-176.                       2,5-furandicarboxylate moiety within the polymer backone and such
            [41]  Carlos  M  H  J,  Martínez  de  Ilarduya  A,  Muñoz-Guerra  S.  Poly   (co) polymers: US20160312008[P]. 2016-10-27.
                 (alkylene  2,5-furandicarboxylate)s  (PEF  and  PBF)  by  ring  opening   [60]  Terzopoulou  Z,  Karakatsianopoulou  E,  Kasmi  N,  et al.  Effect  of
                 polymerization[J]. Polymer, 2016, 87: 148-158.     catalyst type on recyclability and decomposition mechanism of poly
            [42]  Lotti N, Munari A, Gigli M, et al. Thermal and structural response of   (ethylene furanoate) biobased polyester[J]. Journal of Analytical and
                 in  situ  prepared  biobased  poly  (ethylene  2,5-furan  dicarboxylate)   Applied Pyrolysis, 2017, 126: 357-370.
                 nanocomposites[J]. Polymer, 2016, 103: 288-298.     [61]  Maniar D, Jiang Y, Woortman A J J, et al. Furan-based copolyesters
            [43]  Papageorgiou G Z, Tsanaktsis V, Papageorgiou D G, et al. Evaluation   from  renewable  resources:  Enzymatic  synthesis  and  properties[J].
                 of polyesters from renewable resources as alternatives to the current   Chem Sus Chem, 2019, 12(5): 990-999.
                 fossil-based polymers. phase transitions of poly (butylene 2,5-furan-   [62]  Aparaschivei D, Todea A, Frissen A E, et al. Enzymatic synthesis and
                 dicarboxylate)[J]. Polymer, 2014, 55(16): 3846-3858.     characterization  of  novel  terpolymers  from  renewable  sources[J].
            [44]  Papageorgiou  G  Z,  Tsanaktsis  V,  Papageorgiou  D  G,  et al.  Furan-   Pure and Applied Chemistry, 2019, 91(3): 397-408.
                 based  polyesters  from  renewable  resources:  Crystallization  and   [63]  Cruz-Izquierdo  A, van den Broek L  A M,  Serra J L,  et al.
                 thermal  degradation  behavior  of  poly  (hexamethylene  2,5-furan-   Lipase-catalyzed  synthesis  of  oligoesters  of  2,5-furandicarboxylic
                 dicarboxylate)[J]. European Polymer Journal, 2015, 67: 383-396.    acid with aliphatic diols[J]. Pure and Applied Chemistry, 2015, 87(1):
            [45]  Papageorgiou G Z, Guigo N, Tsanaktsis V, et al. On the bio-based   59-69.
                 furanic  polyesters:  Synthesis  and  thermal  behavior  study  of  poly   [64]  Cao Xiaoyu (曹小玉), Li Yuanyuan (李圆圆), Li Yue (李跃), et al.
                 (octylene furanoate) using fast and temperature modulated scanning   Chain  extension  of  poly  (ethylene  2,5-furandicarboxylate)  by
                 calorimetry[J]. European Polymer Journal, 2015, 68: 115-127.     diisocyanate[J]. Polymeric Materials Science and Engineering (高分
            [46]  Tsanaktsis V, Bikiaris D N, Guigo N, et al. Synthesis, properties and   子材料科学与工程), 2017, 33(1): 1-6.
                 thermal  behavior  of  poly  (decylene-2,5-furanoate):  A  biobased   [65]  Terzopoulou  Z,  Tsanaktsis  V,  Bikiaris  D  N,  et al.  Biobased  poly
                 polyester from 2,5-furan dicarboxylic acid[J]. RSC Adv, 2015, 5(91):   (ethylene  furanoate-co-ethylene  succinate)  copolyesters:  Solid  state
                 74592-74604.                                      structure,  melting  point  depression  and  biodegradability[J].  RSC
            [47]  Papageorgiou G Z, Guigo N, Tsanaktsis V, et al. Fast crystallization   Adv, 2016, 6(87): 84003-84015.
                 and  melting  behavior  of  a  long-spaced  aliphatic  furandicarboxylate   [66]  Lomelí-Rodríguez  M,  Martín-Molina  M,  Jiménez-Pardo  M,  et al.
                 biobased polyester, poly (dodecylene 2,5-furanoate)[J]. Industrial &   Synthesis  and  kinetic  modeling  of  biomass-derived  renewable
                 Engineering Chemistry Research, 2016, 55(18): 5315-5326.     Polyesters[J]. Journal of Polymer Science, Part A: Polymer Chemistry,
            [48]  Wang J G, Liu X Q, Jia Z, et al. Synthesis of bio-based poly (ethylene   2016, 54(18): 2876-2887.
                 2,5-furandicarboxylate) copolyesters: higher glass transition temperature,   [67]  Yu Z L, Zhou J D, Cao F, et al. Chemosynthesis and characterization
                 better transparency, and good barrier properties[J]. Journal of Polymer   of  fully  biomass-based  copolymers  of  ethylene  glycol,  2,5-
                 Science, Part A: Polymer Chemistry, 2017, 55(19): 3298-3307.     furandicarboxylic  acid,  and  succinic  acid[J].  Journal  of  Applied
            [49]  Wu  L,  Mincheva  R,  Xu  Y,  et al.  High  molecular  weight  poly   Polymer Science, 2013, 130(2): 1415-1420.
                 (butylene  succinate-co-butylene  furandicarboxylate)  copolyesters:   [68]  Hu H, Zhang R Y, Wang J G, et al. Fully bio-based poly (propylene
                 from  catalyzed  polycondensation  reaction  to  thermomechanical   succinate-co-propylene furandicarboxylate) copolyesters with proper
                 properties[J]. Biomacromolecules, 2012, 13(9): 2973-2981.     mechanical,  degradation  and barrier properties  for green packaging
   18   19   20   21   22   23   24   25   26   27   28