Page 24 - 精细化工2019年第12期
P. 24

·2352·                            精细化工   FINE CHEMICALS                                  第 36 卷

                 applications[J]. European Polymer Journal, 2018, 102: 101-110.     mechanical properties[J]. ACS Sustainable Chemistry & Engineering,
            [69]  Hbaieb S, Kammoun W, Delaite C, et al. New copolyesters containing   2019, 7(5): 5501-5514.
                 aliphatic and bio-based furanic units by bulk copolycondensation[J].   [86]  Xie  H Z,  Wu L B,  Li B  G,  et al.  Biobased  poly  (ethylene-co-
                 Journal  of  Macromolecular  Science,  Part  A-Pure  and  Applied   hexamethylene  2,5-furandicarboxylate)  (PEHF)  copolyesters  with
                 Chemistry, 2015, 52(5): 365-373.                  superior  tensile  properties[J].  Industrial  &  Engineering  Chemistry
            [70]  Zhou W D, Wang X W, Yang B, et al. Synthesis, physical properties   Research, 2018, 57(39): 13094-13102.
                 and  enzymatic  degradation  of  bio-based  poly  (butylene  adipate-   [87]  Xie H Z,  Wu L B,  Li B G,  et al.  Modification  of  poly  (ethylene
                 co-butylene furandicarboxylate) copolyesters[J]. Polymer Degradation   2,5-furandicarboxylate) with bio-based 1,5-pentanediol: Significantly
                 and Stability, 2013, 98(11): 2177-2183.           toughened copolyesters retaining high tensile strength and O 2 barrier
            [71]  Papadopoulos L, Magaziotis A, Nerantzaki M, et al. Synthesis and   property[J]. Biomacromolecules, 2019, 20(1): 353-364.
                 characterization  of  novel  poly  (ethylene  furanoate-co-adipate)   [88]  Wang X S, Wang Q Y, Liu S Y, et al. Synthesis and characterization
                 random  copolyesters  with  enhanced  biodegradability[J].  Polymer   of poly (isosorbide-co-butylene 2,5-furandicarboxylate) copolyesters
                 Degradation and Stability, 2018, 156: 32-42.      [J]. European Polymer Journal, 2019, 115(C): 70-75.
            [72]  Wang  G  Q,  Jiang  M,  Zhang  Q,  et al.  Biobased  copolyesters:   [89]  Morales-Huerta  J  C,  de  Ilarduya  A  M,  Leon  S,  et al.  Isomannide-
                 Synthesis, crystallization behavior, thermal and mechanical properties   containing  poly  (butylene  2,5-furandicarboxylate)  copolyesters  via
                 of  poly  (ethylene  glycol  sebacate-co-ethylene  glycol  2,5-furan   ring opening polymerization[J]. Macromolecules, 2018, 51(9): 3340-
                 dicarboxylate)[J]. RSC Adv, 2017, 7(23): 13798-13807.     3350.
            [73]  Jia Z, Wang J G, Sun L Y, et al. Fully bio-based polyesters derived   [90]  Kwiatkowska M, Kowalczyk I, Kwiatkowski K, et al. Fully biobased
                 from 2,5-furandicarboxylic acid (2, 5-FDCA) and dodecanedioic acid   multiblock copolymers of furan-aromatic polyester and dimerized fatty
                 (DDCA): From semicrystalline thermoplastic to amorphous elastomer   acid: Synthesis and characterization[J]. Polymer, 2016, 99: 503-512.
                 [J]. Journal of Applied Polymer Science, 2018, 135(14): 46076-46086.     [91]  Wang  J  G,  Liu  X  Q,  Zhu  J,  et al.  Copolyesters  based  on
            [74]  Soccio  M,  Costa  M,  Lotti  N,  et al.  Novel  fully  biobased  poly   2,5-furandicarboxylic  acid  (FDCA):  Effect  of  2,2,4,4-tetramethyl-
                 (butylene  2,5-furanoate/diglycolate)  copolymers  containing  ether   1,3-cyclobutanediol  units  on  their  properties[J].  Polymers,  2017,
                 linkages:  Structure-property  relationships[J].  European  Polymer   9(9): 305-320.
                 Journal, 2016, 81: 397-412.                   [92]  Gubbels  E,  Jasinska-Walc  L,  Noordover  B  A  J,  et al.  Linear  and
            [75]  Konstantopoulou  M,  Terzopoulou  Z,  Tsagkalias  J,  et al.  Poly   branched polyester resins based on dimethyl-2, 5-furandicarboxylate
                 (ethylene furanoate-co-ethylene terephthalate) biobased copolymers:   for coating applications[J]. European Polymer Journal, 2013, 49(10):
                 Synthesis,  thermal  properties  and  cocrystallization  behavior[J].   3188-3198.
                 European Polymer Journal, 2017, 89: 349-366.     [93]  Hu  H,  Zhang  R  Y,  Sousa  A,  et al.  Bio-based  poly  (butylene
            [76]  Sousa A F, Matos M, Freire C S R, et al. New copolyesters derived   2,5-furandicarboxylate)-b-poly  (ethylene  glycol)  copolymers  with
                 from terephthalic and 2,5-furandicarboxylic acids: A step forward in   adjustable degradation rate and mechanical properties: Synthesis and
                 the  development  of  biobased  polyesters[J].  Polymer,  2013,  54(2):   characterization[J]. European Polymer Journal, 2018, 106: 42-52.
                 513-519.                                      [94]  Wang G Q, Jiang M, Zhang Q, et al. Biobased multiblock copolymers:
            [77]  Wang  X  S,  Wang  Q  Y,  Liu  S  Y,  et al.  Biobased  copolyesters:   Synthesis, properties and shape memory behavior of poly (hexamethylene
                 Synthesis, structure, thermal and mechanical properties of poly (ethylene   2,5-furandicarboxylate)-b-poly (ethylene glycol)[J]. Polymer Degradation
                 2,5-furandicarboxylate-co-ethylene  1,  4-cyclohexanedicarboxylate)[J].   and Stability, 2018, 153: 292-297.
                 Polymer Degradation and Stability, 2018, 154: 96-102.     [95]  Matos M, Sousa A, Mendonca P V, et al. Co-polymers based on poly
            [78]  Wu H L, Wen B B, Zhou J D, et al. Synthesis and degradability of   (1,  4-butylene  2,  5-furandicarboxylate)  and  poly  (propylene  oxide)
                 copolyesters of 2, 5-furandicarboxylic acid, lactic acid, and ethylene   with  tuneable  thermal  properties:  Synthesis  and  characterization[J].
                 glycol[J]. Polymer Degradation and Stability, 2015, 121: 100-104.     Materials (Basel), 2019, 12(2): 328-340.
            [79]  Matos M, Sousa A F, Fonseca A C, et al. A new generation of furanic   [96]  Zhou W D, Zhang Y J, Xu Y, et al. Synthesis and characterization of
                 copolyesters  with  enhanced  degradability:  Poly  (ethylene  2,5-   bio-based poly (butylene furandicarboxylate)-b-poly (tetramethylene
                 furandicarboxylate)-co-poly (lactic acid) copolyesters[J]. Macromolecular   glycol) copolymers[J]. Polymer Degradation and Stability, 2014, 109:
                 Chemistry and Physics, 2014, 215(22): 2175-2184.     21-26.
            [80]  Hu H, Zhang R Y, Shi L, et al. Modification of poly (butylene 2,5-   [97]  Xie H Z,  Wu L B,  Li B G,  et al.  Poly  (ethylene  2,5-
                 furandicarboxylate)  with  lactic  acid  for  biodegradable  copolyesters   furandicarboxylate-mb-poly  (tetramethylene  glycol))  multiblock
                 with  good  mechanical  and  barrier  properties[J].  Industrial  &   copolymers:  From  high  tough  thermoplastics  to  elastomers[J].
                 Engineering Chemistry Research, 2018, 57(32): 11020-11030.     Polymer, 2018, 155: 89-98.
            [81]  Wang X S, Liu S Y, Wang Q Y, et al. Synthesis and characterization   [98]  Hu H, Zhang R Y, Wang J G, et al. Synthesis and structure–property
                 of  poly  (ethylene  2,5-furandicarboxylate-co-epsilon-caprolactone)   relationship of biobased biodegradable poly (butylene carbonate-co-
                 copolyesters[J]. European Polymer Journal, 2018, 109: 191-197.     furandicarboxylate)[J].  ACS  Sustainable  Chemistry  &  Engineering,
            [82]  Morales-Huerta J C, Martínez de Ilarduya A, Muñoz-Guerra S. Blocky   2018, 6(6): 7488-7498.
                 poly  (ɛ-caprolactone-co-butylene  2,5-furandicarboxylate)  copolyesters   [99]  Jia Z, Wang J G, Sun L Y, et al. Copolyesters developed from bio-
                 via  enzymatic  ring  opening  polymerization[J].  Journal  of  Polymer   based  2,5-furandicarboxylic  acid:  Synthesis,  sequence  distribution,
                 Science, Part A: Polymer Chemistry, 2018, 56(3): 290-299.     mechanical,  and  barrier  properties  of  poly  (propylene-co-
            [83]  Zheng  M  Y,  Zang  X  L,  Wang  G  X,  et al.  Poly  (butylene   1,4-cyclohexanedimethylene  2,5-furandicarboxylate)s[J].  Journal of
                 2,5-furandicarboxylate-ε-caprolactone):  A  new  bio-based  elastomer   Applied Polymer Science, 2019, 136(13): 47291-47298.
                 with high strength and biodegradability[J]. Express Polymer Letter,   [100]  Peng S B, Wu B S, Wu L B, et al. Hydrolytic degradation of biobased
                 2017, 11(8): 611-621.                             poly  (butylene  succinate-co-furandicarboxylate)  and  poly  (butylene
            [84]  Ma J P , Pang Y, Wang M, et al. The copolymerization reactivity of   adipate-co-furandicarboxylate)  copolyesters  under  mild  conditions
                 diols  with  2,5-furandicarboxylic  acid  for  furan-based  copolyester   [J]. Journal of Applied Polymer Science, 134(15): 44674-44684.
                 materials[J]. Journal of Materials Chemistry, 2012, 22(8): 3457-3461.     [101]  Kwiatkowska M, Kowalczyk I, Kwiatkowski K, et al. Synthesis and
            [85]  Chebbi Y, Kasmi N, Majdoub M, et al. Synthesis, characterization,   structure–property  relationship  of  biobased  poly  (butylene  2,5-
                 and  biodegradability  of  novel  fully  biobased  poly  (decamethylene-   furanoate)–block–(dimerized  fatty  acid)  copolymers[J].  Polymer,
                 co-isosorbide  2,5-furandicarboxylate)  copolyesters  with  enhanced   2017, 130: 26-38.
   19   20   21   22   23   24   25   26   27   28   29