Page 144 - 201905
P. 144
·912· 精细化工 FINE CHEMICALS 第 36 卷
from syngas on ordered mesoporous copper incorporated alumina[J]. 4: 3612-3620.
Journal of Energy Chemistry, 2016, 25: 775-781. [24] Takeishi K, Wagatsuma Y, Ariga H, et al. Promotional effect of
[16] Ham H, Kim J, Cho S J, et al. Enhanced stability of spatially water on direct dimethyl ether synthesis from carbon monoxide and
confined copper nanoparticles in an ordered mesoporous alumina for hydrogen catalyzed by Cu-Zn/Al 2O 3[J]. ACS Sustainable Chemistry
dimethyl ether synthesis from syngas[J]. ACS Catalysis, 2016, 6: & Engineering, 2017, 5: 3675-3680.
5629-5640. [25] Frusteri F, Cordaro M, Cannilla C, et al. Multifunctionality of
[17] Witoon T, Bumrungsalee S, Chareonpanich M, et al. Effect of Cu-ZnO-ZrO 2/H-ZSM5 catalysts for the one-step CO 2-to-DME
hierarchical meso-macroporous alumina-supported copper catalyst hydrogenation rection[J]. Applied Catalysis B: Environmental, 2015,
for methanol synthesis from CO 2 hydrogenation[J]. Energy Conversion 162: 57-65.
and Management, 2015, 103: 886-894. [26] Berg R V D, Prieto G, Korpershoek G, et al. Structure sensitivity of
[18] Baltes C, Vukojevi S, Schuth F. Correlations between synthesis, Cu and CuZn Catalysts relevant to industrial methanol synthesis[J].
precursor, and catalyst structure and activity of a large set of Nature Communications, 2016, 7: 13057.
CuO/ZnO/Al 2O 3 catalysts for methanol synthesis[J]. Journal of [27] Yang H Y, Gao P, Zhang C, et al. Core-shell structured Cu@m-SiO 2
Catalysis, 2008, 258: 334-344. and Cu/ZnO@m-SiO 2 catalysts formethanol synthesis from CO 2
[19] Galván C Á, Schumann J, Behrens M, et al. Reverse water-gas shift hydrogenation[J]. Catalysis Communications, 2016, 84: 56-60.
reaction at the Cu/ZnO interface: influence of the Cu/Zn ratio on [28] Hosseini S Y, Nikou M R K. Investigation of different precipitating
structure-activity correlations[J]. Applied Catalysis B Environmental, agents effects on performance of γ-Al 2O 3 nanocatalysts for methanol
2016, 195: 104-111. dehydration to dimethyl ether[J]. Journal of Industrial and Engineering
[20] Lei H, Nie R, Wu G, et al. Hydrogenation of CO 2 to CH 3OH over Chemistry, 2014, 20: 4421-4428.
Cu/ZnO catalysts with different ZnO morphology[J]. Fuel, 2015, [29] Sabour B, Peyrovi M H, HamouleT, et al. Catalytic dehydration of
154: 161-166. methanol to dimethyl ether (DME) over Al-HMS catalysts[J]. Journal
[21] Valant A L, Comminges C, Tisseraud C, et al. The Cu-ZnO synergy of Industrial and Engineering Chemistry, 2014, 20: 222-227.
in methanol synthesis from CO 2, Part 1: Origin of active site [30] Khandan N, Kazemeini M, Aghaziarati M, et al. Determining an
explained by experimental studies and a sphere contact quantification optimum catalyst for liquid-phase dehydration of methanol to
+
model on Cu ZnO mechanical mixtures[J]. Journal of Catalysis, dimethyl ether[J]. Applied Catalysis A: General, 2008, 349: 6-12.
2015, 324: 41-49. [31] Guangjun L, Chuantao G, Wanbin Z, et al. Hydrogen production
[22] Hong L, Hou Z, Xie J. Hydrogenation of CO 2 to CH 3OH over from methanol decomposition using Cu-Al spinel catalysts[J]. Journal
CuO/ZnO/Al 2O 3 catalysts prepared via a solvent-free routine[J]. of Cleaner Production, 2018, 183: 415-423.
Fuel, 2016, 164: 191-198. [32] Jiang H Q, Bongard H, Schmidt W, et al. One-pot synthesis of
[23] Zhu Y F, Kong X, Li X Q, et al. Cu nanoparticles inlaid mesoporous mesoporous Cu-γ-Al 2O 3 as bifunctional catalyst for direct dimethyl
Al 2O 3 as a high-performance bifunctional catalyst for ethanol ether synthesis[J]. Microporous and Mesoporous Materials, 2012,
synthesis via dimethyl oxalate hydrogenatin[J]. ACS Catalysis, 2014, 164: 3-8.
(上接第 897 页) in methanol to gasoline reaction[J]. Chinese Journal of Catalysis (催
化学报), 2013, 34(6): 1158-1158.
[2] Zhang Y, Zhou Y, Shi J, et al. Comparative study of bimetallic Pt-Sn [11] Liu Dongmei (刘冬梅), Tie Daxing (铁大兴), Gao Chenyi (高晨义),
catalysts supported on different supports for propane dehydrogenation[J]. et al. Preparation of micro-mesoporous ZSM-5 zeolite through mixed
Journal of Molecular Catalysis A: Chemical, 2014, 381(1): 138-147. alkali treatment and its catalytic performance in the alkylation of
[3] Kumar S M, Chen D, Holmen A, et al. Dehydrogenation of propane thiophene[J]. Journal of Fuel Chemistry and Technology (燃料化学
over Pt-SBA-15 and Pt-Sn-SBA-15: effect of Sn on the dispersion of 学报), 2017, 45(2): 200-212.
Pt and catalytic behavior[J]. Catalysis Today, 2009, 142(1/2): 17-23. [12] Liu Dongmei (刘冬梅), Zhai Yuchun (翟玉春), Ma Jian (马健), et al.
[4] Cai Jinpeng (蔡金鹏), Wang Fei (王非), Hu Jianheng (胡建恒), et al. Study on the ophene alkylation performance of hierarchical ZSM-5
Preparation and hydrodesulfurization performance of ZSM-5-MCM-41 zeolites modified by different alikali[J]. Journal of Fuel Chemistry
supported Ni Mo bimetallic sulfide catalysts[J]. Fine Chemicals (精 and Technology (燃料化学学报), 2015, 43(4): 462-469.
细化工), 2017, 34(8): 887-892. [13] Perez-Ramirez J, Verboekend D, Bonilla A, et al. Zeolite catalysts
[5] Wang Xiuling (王秀玲). Effect of zeolite support on catalytic with tunable hierarchy factor by pore-growth moderators[J]. Advance
performance of Pt-Sn-Na catalyst for propane dehydrogenation[J]. Functional Materials, 2009, 19(24): 3972-3979.
Petrochemical Technology (石油化工), 2012, 12(41): 1346-1350. [14] Zhao L, Xu C M, Gao S, et al. Effects of concentration on the
[6] Qiu Anding (邱安定), Fan Yining (范以宁). Effect of addition of tin alkali-treatment of ZSM-5 zeolite: A study on dividing points[J].
on the catalytic properties of Pt/ZSM-5 catalyst in propane Journal of Material Science, 2010, 45(19): 5406-5441.
dehydrogenation[J]. Journal of Fuel Chemistry and Technology (燃 [15] Nagabhatla V, Sandeep K S, Jitendra K, et al. Catalytic performance
料化学学报), 2008, 36(5): 637-640. of nano crystalline HZSM-5 in ethanol to gasoline (ETG) reaction[J].
[7] Si Zhenliang (司振良), Zhang Ruizhen (张瑞珍), Song Lanlan (宋兰 Fuel, 2012, 95(1): 298-304.
兰). Alkylation of toluene with methanol over modified HZSM-5 [16] Yan Yichun (颜贻春), Xie Changshi (谢常实), Qin guanlin (秦关林).
catalysts[J]. Fine Chemicals (精细化工), 2011, 28(5): 461-466. Adsorption and temperature programmed desorption of ammonia on
[8] Suzuki T, Okuhara T. Change in pore structure of MFI zeolite by zeolite HZSM-5[J]. Chinese Journal of Catalysis (催化学报), 1984,
treatment with NaOH aqueous solution[J]. Microporous Mesoporous 5(1): 87-90.
Materials, 2001, 43(1): 83-89. [17] Song Y Q, Feng Y L, Liu F, et al. Effect of variations in pore
[9] Wang Yaquan (王亚权), Lin Yongjie (林永杰), Liu Wei (刘伟), et al. structure and acidity of alkali treated ZSM-5 on the isomerization
Effect of TS-1 treatment by tetrapropyl ammonium hydroxide on performance[J]. Journal of Molecular Catalysis A: Chemical, 2009,
1-hexene epoxidation[J]. Journal of Tianjin University (天津大学学 310(1/2): 130-137.
报), 2017, 50(1): 65-70. [18] Zhang Yiwei (张一卫), Zhou Yuming (周钰明), Fan Yining (范以宁),
[10] He Yingping (何英萍), Liu Min (刘民), Dai Chengyi (代成义), et al. Effect of Na addition on catalytic performance of PtSn/ZSM-5
et al. Modification of nanocrystalline HZSM-5 zeolite with catalyst for propane dehydrogenation[J]. Acta Physico-Chimica
tetrapropylammonium hydroxide and its catalytic performance Sinica (物理化学学报), 2006, 22(6): 672-678.