Page 144 - 201905
P. 144

·912·                             精细化工   FINE CHEMICALS                                  第 36 卷

                 from syngas on ordered mesoporous copper incorporated alumina[J].   4: 3612-3620.
                 Journal of Energy Chemistry, 2016, 25: 775-781.     [24]  Takeishi  K,  Wagatsuma  Y,  Ariga  H,  et al.  Promotional  effect  of
            [16]  Ham  H,  Kim  J,  Cho  S  J,  et al.  Enhanced  stability  of  spatially   water on direct dimethyl ether synthesis from carbon monoxide and
                 confined copper nanoparticles in an ordered mesoporous alumina for   hydrogen catalyzed by Cu-Zn/Al 2O 3[J]. ACS Sustainable Chemistry
                 dimethyl  ether  synthesis  from  syngas[J].  ACS  Catalysis,  2016,  6:   & Engineering, 2017, 5: 3675-3680.
                 5629-5640.                                    [25]  Frusteri  F,  Cordaro  M,  Cannilla  C,  et al.  Multifunctionality  of
            [17]  Witoon  T,  Bumrungsalee  S,  Chareonpanich  M,  et al.  Effect  of   Cu-ZnO-ZrO 2/H-ZSM5  catalysts  for  the  one-step  CO 2-to-DME
                 hierarchical  meso-macroporous  alumina-supported  copper  catalyst   hydrogenation rection[J]. Applied Catalysis B: Environmental, 2015,
                 for methanol synthesis from CO 2 hydrogenation[J]. Energy Conversion   162: 57-65.
                 and Management, 2015, 103: 886-894.           [26]  Berg R V D, Prieto G, Korpershoek G, et al. Structure sensitivity of
            [18]  Baltes  C,  Vukojevi  S,  Schuth  F.  Correlations  between  synthesis,   Cu and CuZn Catalysts relevant to industrial methanol synthesis[J].
                 precursor,  and  catalyst  structure  and  activity  of  a  large  set  of   Nature Communications, 2016, 7: 13057.
                 CuO/ZnO/Al 2O 3  catalysts  for  methanol  synthesis[J].  Journal  of   [27]  Yang H Y, Gao P, Zhang C, et al. Core-shell structured Cu@m-SiO 2
                 Catalysis, 2008, 258: 334-344.                    and  Cu/ZnO@m-SiO 2  catalysts  formethanol  synthesis  from  CO 2
            [19]  Galván C Á, Schumann J, Behrens M, et al. Reverse water-gas shift   hydrogenation[J]. Catalysis Communications, 2016, 84: 56-60.
                 reaction  at  the  Cu/ZnO  interface:  influence  of  the  Cu/Zn  ratio  on   [28]  Hosseini S Y, Nikou M R K. Investigation of different precipitating
                 structure-activity correlations[J]. Applied Catalysis B Environmental,   agents effects on performance of γ-Al 2O 3 nanocatalysts for methanol
                 2016, 195: 104-111.                               dehydration to dimethyl ether[J]. Journal of Industrial and Engineering
            [20]  Lei H, Nie R, Wu G, et al. Hydrogenation of CO 2 to CH 3OH over   Chemistry, 2014, 20: 4421-4428.
                 Cu/ZnO  catalysts  with  different  ZnO  morphology[J].  Fuel,  2015,   [29]  Sabour B, Peyrovi M H, HamouleT, et al. Catalytic dehydration of
                 154: 161-166.                                     methanol to dimethyl ether (DME) over Al-HMS catalysts[J]. Journal
            [21]  Valant A L, Comminges C, Tisseraud C, et al. The Cu-ZnO synergy   of Industrial and Engineering Chemistry, 2014, 20: 222-227.
                 in  methanol  synthesis  from  CO 2,  Part  1:  Origin  of  active  site   [30]  Khandan  N,  Kazemeini  M,  Aghaziarati  M,  et al.  Determining  an
                 explained by experimental studies and a sphere contact quantification   optimum  catalyst  for  liquid-phase  dehydration  of  methanol  to
                         +
                 model  on  Cu ZnO  mechanical  mixtures[J].  Journal  of  Catalysis,   dimethyl ether[J]. Applied Catalysis A: General, 2008, 349: 6-12.
                 2015, 324: 41-49.                             [31]  Guangjun  L,  Chuantao  G,  Wanbin  Z,  et al.  Hydrogen  production
            [22]  Hong  L,  Hou  Z,  Xie  J.  Hydrogenation  of  CO 2 to  CH 3OH  over   from methanol decomposition using Cu-Al spinel catalysts[J]. Journal
                 CuO/ZnO/Al 2O 3 catalysts prepared  via  a  solvent-free  routine[J].   of Cleaner Production, 2018, 183: 415-423.
                 Fuel, 2016, 164: 191-198.                     [32]  Jiang  H  Q,  Bongard  H,  Schmidt  W,  et al.  One-pot  synthesis  of
            [23]  Zhu Y F, Kong X, Li X Q, et al. Cu nanoparticles inlaid mesoporous   mesoporous Cu-γ-Al 2O 3 as bifunctional catalyst for direct dimethyl
                 Al 2O 3  as  a  high-performance  bifunctional  catalyst  for  ethanol   ether  synthesis[J].  Microporous  and  Mesoporous  Materials,  2012,
                 synthesis via dimethyl oxalate hydrogenatin[J]. ACS Catalysis, 2014,   164: 3-8.

            (上接第 897 页)                                            in methanol to gasoline reaction[J]. Chinese Journal of Catalysis (催
                                                                   化学报), 2013, 34(6): 1158-1158.
            [2]   Zhang Y, Zhou Y, Shi J, et al. Comparative study of bimetallic Pt-Sn   [11]  Liu Dongmei (刘冬梅), Tie Daxing (铁大兴), Gao Chenyi (高晨义),
                 catalysts supported on different supports for propane dehydrogenation[J].   et al. Preparation of micro-mesoporous ZSM-5 zeolite through mixed
                 Journal of Molecular Catalysis A: Chemical, 2014, 381(1): 138-147.     alkali  treatment  and  its  catalytic  performance  in  the  alkylation  of
            [3]   Kumar S M, Chen D, Holmen A, et al. Dehydrogenation of propane   thiophene[J]. Journal of Fuel Chemistry and Technology (燃料化学
                 over Pt-SBA-15 and Pt-Sn-SBA-15: effect of Sn on the dispersion of   学报), 2017, 45(2): 200-212.
                 Pt and catalytic behavior[J]. Catalysis Today, 2009, 142(1/2): 17-23.     [12]  Liu Dongmei (刘冬梅), Zhai Yuchun (翟玉春), Ma Jian (马健), et al.
            [4]   Cai Jinpeng (蔡金鹏), Wang Fei (王非), Hu Jianheng (胡建恒), et al.   Study on the ophene alkylation performance of hierarchical ZSM-5
                 Preparation and hydrodesulfurization performance of ZSM-5-MCM-41   zeolites  modified  by  different  alikali[J].  Journal  of  Fuel  Chemistry
                 supported Ni Mo bimetallic sulfide catalysts[J]. Fine Chemicals (精  and Technology (燃料化学学报), 2015, 43(4): 462-469.
                 细化工), 2017, 34(8): 887-892.                   [13]  Perez-Ramirez  J,  Verboekend  D,  Bonilla  A, et al.  Zeolite  catalysts
            [5]   Wang  Xiuling  (王秀玲).  Effect  of  zeolite  support  on  catalytic   with tunable hierarchy factor by pore-growth moderators[J]. Advance
                 performance  of  Pt-Sn-Na  catalyst  for  propane  dehydrogenation[J].   Functional Materials, 2009, 19(24): 3972-3979.
                 Petrochemical Technology (石油化工), 2012, 12(41): 1346-1350.     [14]  Zhao  L,  Xu  C  M,  Gao  S,  et al.  Effects  of  concentration  on  the
            [6]   Qiu Anding (邱安定), Fan Yining (范以宁). Effect of addition of tin   alkali-treatment  of  ZSM-5  zeolite:  A  study  on  dividing  points[J].
                 on  the  catalytic  properties  of  Pt/ZSM-5  catalyst  in  propane   Journal of Material Science, 2010, 45(19): 5406-5441.
                 dehydrogenation[J]. Journal of Fuel Chemistry and Technology (燃  [15]  Nagabhatla V, Sandeep K S, Jitendra K, et al. Catalytic performance
                 料化学学报), 2008, 36(5): 637-640.                     of nano crystalline HZSM-5 in ethanol to gasoline (ETG) reaction[J].
            [7]   Si Zhenliang (司振良), Zhang Ruizhen (张瑞珍), Song Lanlan (宋兰  Fuel, 2012, 95(1): 298-304.
                 兰).  Alkylation  of  toluene  with  methanol  over  modified  HZSM-5   [16]  Yan Yichun (颜贻春), Xie Changshi (谢常实), Qin guanlin (秦关林).
                 catalysts[J]. Fine Chemicals (精细化工), 2011, 28(5): 461-466.     Adsorption and temperature programmed desorption of ammonia on
            [8]   Suzuki  T,  Okuhara  T.  Change  in  pore  structure  of  MFI  zeolite  by   zeolite HZSM-5[J]. Chinese Journal of Catalysis (催化学报), 1984,
                 treatment with NaOH aqueous solution[J]. Microporous Mesoporous   5(1): 87-90.
                 Materials, 2001, 43(1): 83-89.                [17]  Song  Y  Q,  Feng  Y  L,  Liu  F,  et al.  Effect  of  variations  in  pore
            [9]   Wang Yaquan (王亚权), Lin Yongjie (林永杰), Liu Wei (刘伟), et al.   structure  and  acidity  of  alkali  treated  ZSM-5  on  the  isomerization
                 Effect  of  TS-1  treatment  by  tetrapropyl  ammonium  hydroxide  on   performance[J]. Journal of Molecular Catalysis A: Chemical, 2009,
                 1-hexene epoxidation[J]. Journal of Tianjin University (天津大学学   310(1/2): 130-137.
                 报), 2017, 50(1): 65-70.                       [18]  Zhang Yiwei (张一卫), Zhou Yuming (周钰明), Fan Yining (范以宁),
            [10]  He  Yingping  (何英萍), Liu Min  (刘民), Dai Chengyi (代成义),      et al. Effect of Na addition on catalytic performance of PtSn/ZSM-5
                 et al.  Modification  of  nanocrystalline  HZSM-5  zeolite  with   catalyst  for  propane  dehydrogenation[J].  Acta  Physico-Chimica
                 tetrapropylammonium  hydroxide  and  its  catalytic  performance   Sinica (物理化学学报), 2006, 22(6): 672-678.
   139   140   141   142   143   144   145   146   147   148   149