Page 105 - 201907
P. 105

第 7 期                  余带兵,等: NMN 转移酶和乙醇脱氢酶共固定化及其动力学特性                                  ·1351·


            米氏常数;V m1 —NMN 转移酶的最大反应速度,                             Optimization   of   NMN   adenylyltransferase   production   by
                                                                   recombinant  Escherichia coli  using  response  surface  methodology
            mmol/min;V m2 —乙醇脱氢酶的最大反应速度,                           coupled with desirability function[J]. Industrial Microbiology (工业
            mmol/min;S—NMN 的浓度,mmol/L;[E 1 ]—NMN                   微生物), 2016, 46(6): 47-53.
                                                               [8]   Lei  Jiemei  (雷洁梅),  Lv  Liu  (吕柳), Liu Ling  (刘玲),  et al.
            转移酶的浓度,mmol/L;[E 2 ]—乙醇脱氢酶的浓度,                         Preparation and characterization of magnetic nanoparticles of Fe 3O 4
            mmol/L;K m —固定化双酶的米氏常数;V—固定化                           coated  with  mesoporous  SiO 2[J].  Acta  Physica  Sinica  (物理学报),
                                                                   2011, 60(1): 622-627.
            双酶的反应速率,mmol/min;P 1 —NAD 的浓度,                     [9]   Sun Ning (孙宁), Hu Fei (胡飞). Surface composite-modification of
                                                                   superparamagnetic  particles  for  α -amylaze  immobilization[J].
            mmol/L;P 2 —NADH 的浓度,mmol/L。                           Transactions of the Chinese Society of Agricultural Engineering (农
                                                                   业工程学报), 2016, 32(11): 290-294.
            3   结论                                             [10]  He  Quanguo  (贺全国),  Wu  Wei  (吴伟), Lin Lin  (林琳).  Amino-
                                                                   coated  magnetite  nanoparticles  preparation  and  characterization[J].
                                                                   Journal of University of South China(Science & Technology) (南华
                 采用磁性纳米颗粒对乙醇脱氢酶和 NMN 转移                            大学学报(自然科学版), 2007, 21(1): 19-24.
            酶进行共固定化,考察了其共固定化条件及固定化                             [11]  Babu  C  M,  Palanisamy  B,  Sundaravel  B,  et al.  A  novel  magnetic
                                                                   Fe 3O 4/SiO 2 core-shell nanorods for the removal of arsenic[J]. Journal
            性能以及共固定化双酶的动力学。                                        of Nanoscience & Nanotechnology, 2013, 13(4): 2517-2527.
                (1)对共固定化条件进行优化,结果显示:共                          [12]  Zhu  Miaomiao  (朱苗苗),  Liu  Changxian  (柳畅先).  Study  on
                                                                   enzymatic characterizations of the immobilized enzymes in reversed
            固定化 pH 为 5.0~7.0,温度为 25  ℃,共固定化时                       micelle[J].  Chemical  Research  and  Application  (化学研究与应用),
            间为 2 h,双酶添加量分别为 6.5 U/mg(NMN 转移                        2015, (2): 168-171.
                                                               [13]  An Yan (安燕), Zhang Yuxing (张玉星), Gu Xuemei (顾雪梅), et al.
            酶)和 10.3 U/ mg(乙醇脱氢酶),NADH 产率可达                        Immobilized polyphenol oxidase and its enzymatic oxidation phenolic
            到 87%。                                                 compounds[J].  Environmental  Science  &  Technology  (环境科学与
                                                                   技术), 2013, (9): 27-31.
                (2)共固定化双酶的稳定性较强,酶活力损失                          [14]  Hu Jing (胡晶). Competitive adsorption of multi-component proteins
            小,连续使用 11 次后固定化酶剩余酶活力为 61.1%。                          and  co-immobilization  of  binary-enzymes  on  CMK-3[D].  Dalian:
                                                                   Liaoning Normal University (辽宁师范大学), 2013.
                (3)固定化双酶动力学数据实验验证结果与双                          [15]  Gu Xujiong (顾旭炯). Studied on co-immobilization of two enzymes
            酶动力学推导结果吻合,遵循 Lineweaver-burk 双倒                       system  and  kinetics[D].  Hangzhou:  Zhejiang  University  of
                                                                   Technology (浙江工业大学), 2006.
            数曲线的一般规律,其动力学反应速率取决于固定                             [16]  Tang Yulan (汤玉兰), Chen Zuanguang (陈缵光), Cheng Zhiyi (成志
                                                                   毅). Research progress in multi-enzyme co-immobilization reaction
            化乙醇脱氢酶的反应速率,即 V 2 。                                    systems[J]. China Biotechnology (中国生物工程杂志), 2015, 35(1):
                 使用磁性纳米颗粒为载体,制备的共固定化乙                              82-87.
                                                               [17]  Poojari  Y,  Clarson  S  J.  Thermal  stability  of Candida  antarctica,
            醇脱氢酶和 NMN 转移酶,工艺简单,NADH 产率                             lipase B  immobilized  on  macroporous  acrylic  resin  particles  in
            高,且共固定化双酶稳定性好,其双酶动力方程推                                 organic media[J]. Biocatalysis & Agricultural Biotechnology, 2013,
                                                                   2(1): 7-11.
            导与实验验证表明共固定化双酶反应体系符合米氏                             [18]  Liao Hongdong (廖红东). Immobilization of cellulases on magnetic
            方程,具有较好的工业前景,如何防止共固定化酶                                 nanoparticles and construction of genetic transformation system for
                                                                   cellulolyticfilamentous fungi[D]. Changsha: Hunan University (湖南
            在多次使用后的聚沉以及如何在工业化中量产                                   大学), 2010.
            NADH 有待进一步研究。                                      [19]  Yu Daibing (余带兵), Li Hongmei (李红梅), Gao Lujiao (高露姣), et al.
                                                                   Immobilizing  alcohol  dehydrogenase  by  magnetic  nanoparticles[J].
                                                                   Industrial Microbiology (工业微生物), 2019, 49(1): 26-32.
            参考文献:                                              [20]  Garcíagarcía  P,  Rochamartin  J,  Fernandezlorente  G,  et al.
            [1]   Li  Da  (李达),  Lun  Yongzhi  (伦永志),  Zhou  Shisheng  (周士胜).   Co-localization  of  oxidase  and  catalase  inside  a  porous  support to
                 Recent  progress  of  NAD+/NADH  metabolism[J].  Letters  in   improve the elimination of hydrogen peroxide: Oxidation of biogenic
                 Biotechnology (生物技术通讯), 2010, 21(1): 98-102.      amines  by  amino  oxidase  from  Pisum  sativum[J].  Enzyme  &
            [2]   Zhang Shanshan (张姗姗), Wang Yan (王彦), Li Dedong (李德东),   Microbial Technology, 2018, 115: 73.
                 et al. Metabolism and function of NADH and NADPH[J]. Academic   [21]  Maria  G,  Khwayyir  H  H  S,  Dinculescu  D.  Derivation  of  pareto
                 Journal of Second Military Medical University (第二军医大学学报),   optimal  operating  policies  based  on  safety  indices  for  a  catalytic
                 2011, 32(11): 1239-1243.                          multi-tubular  reactor  used  for  nitrobenzene  hydrogenation[J].
            [3]   Suye S I, Yokoyama S, Obayashi A. NADH production from NAD+   Chemical & Biochemical Engineering Quarterly, 2016, 30(3): 279- 290.
                 using malic enzyme of pseudomonas diminuta IFO-13182[J]. Journal   [22]  Jiang Hangyu (蒋航宇), Zhang Tao (张涛), Jiang Bo (江波), et al.
                 of Fermentation & Bioengineering, 1989, 68(5): 301-304.     Preparation   and   characterization   of   immobilized   arginine
            [4]   Šilhánková L, Adámková-Očenášková K, Machová Z. Production of   deiminase[J]. Science and Technology of Food Industry (食品工业科
                 nadh  by  microbial  reduction  of  added  nad[J].  Biotechnology   技), 2017, (12): 129-134.
                 Techniques, 1992, 6(5): 455-460.              [23]  Li H, Xiao W, Xie P, et al. Co-immobilization of enoate reductase
            [5]   Itoh N, Matsuda M, Mabuchi M, et al. Chiral alcohol production by   with  a  cofactor-recycling  partner  enzyme[J].  Enzyme  Microb
                 NADH-dependent phenylacetaldehyde reductase coupled with in situ,   Technol, 2018, 109: 66-73.
                 regeneration of NADH[J]. Febs Journal, 2010, 269(9): 2394- 2402.     [24]  Hui  Ming  (惠明),  Dong  Zhen  (董贞),  Tian  Qing  (田青),  et al.
            [6]   Samuel N, Bao T, Zhang X, et al. Optimized whole cell biocatalyst   Co-immobilization  of  glucose  oxidase  and  catalase  on  carbon
                 from  acetoin  to  2,  3‐butanediol  through  coexpression  of  acetoin   fiber[J]. Journal of Chinese Institute of Food Science and Technology
                 reductase  with  NADH  regeneration  systems  in  engineered  Bacillus   (中国食品学报), 2018, (3): 134-140.
                 subtilis[J]. Journal of Chemical Technology & Biotechnology, 2017,   [25]  Gao  Jun  (高军).  Dynamic  effects  of  PAEs  on  soil  urease  and
                 92(9): 2477-2487.                                 phosphatase[J].  Agricultural  Science  &  Technoligy,  2010,  11(2):
            [7]   Duan  Lin-lin  (段琳琳),  Li  Hong-mei  (李红梅),  He  Hai  (何海).   189-192.
   100   101   102   103   104   105   106   107   108   109   110