Page 105 - 201907
P. 105
第 7 期 余带兵,等: NMN 转移酶和乙醇脱氢酶共固定化及其动力学特性 ·1351·
米氏常数;V m1 —NMN 转移酶的最大反应速度, Optimization of NMN adenylyltransferase production by
recombinant Escherichia coli using response surface methodology
mmol/min;V m2 —乙醇脱氢酶的最大反应速度, coupled with desirability function[J]. Industrial Microbiology (工业
mmol/min;S—NMN 的浓度,mmol/L;[E 1 ]—NMN 微生物), 2016, 46(6): 47-53.
[8] Lei Jiemei (雷洁梅), Lv Liu (吕柳), Liu Ling (刘玲), et al.
转移酶的浓度,mmol/L;[E 2 ]—乙醇脱氢酶的浓度, Preparation and characterization of magnetic nanoparticles of Fe 3O 4
mmol/L;K m —固定化双酶的米氏常数;V—固定化 coated with mesoporous SiO 2[J]. Acta Physica Sinica (物理学报),
2011, 60(1): 622-627.
双酶的反应速率,mmol/min;P 1 —NAD 的浓度, [9] Sun Ning (孙宁), Hu Fei (胡飞). Surface composite-modification of
superparamagnetic particles for α -amylaze immobilization[J].
mmol/L;P 2 —NADH 的浓度,mmol/L。 Transactions of the Chinese Society of Agricultural Engineering (农
业工程学报), 2016, 32(11): 290-294.
3 结论 [10] He Quanguo (贺全国), Wu Wei (吴伟), Lin Lin (林琳). Amino-
coated magnetite nanoparticles preparation and characterization[J].
Journal of University of South China(Science & Technology) (南华
采用磁性纳米颗粒对乙醇脱氢酶和 NMN 转移 大学学报(自然科学版), 2007, 21(1): 19-24.
酶进行共固定化,考察了其共固定化条件及固定化 [11] Babu C M, Palanisamy B, Sundaravel B, et al. A novel magnetic
Fe 3O 4/SiO 2 core-shell nanorods for the removal of arsenic[J]. Journal
性能以及共固定化双酶的动力学。 of Nanoscience & Nanotechnology, 2013, 13(4): 2517-2527.
(1)对共固定化条件进行优化,结果显示:共 [12] Zhu Miaomiao (朱苗苗), Liu Changxian (柳畅先). Study on
enzymatic characterizations of the immobilized enzymes in reversed
固定化 pH 为 5.0~7.0,温度为 25 ℃,共固定化时 micelle[J]. Chemical Research and Application (化学研究与应用),
间为 2 h,双酶添加量分别为 6.5 U/mg(NMN 转移 2015, (2): 168-171.
[13] An Yan (安燕), Zhang Yuxing (张玉星), Gu Xuemei (顾雪梅), et al.
酶)和 10.3 U/ mg(乙醇脱氢酶),NADH 产率可达 Immobilized polyphenol oxidase and its enzymatic oxidation phenolic
到 87%。 compounds[J]. Environmental Science & Technology (环境科学与
技术), 2013, (9): 27-31.
(2)共固定化双酶的稳定性较强,酶活力损失 [14] Hu Jing (胡晶). Competitive adsorption of multi-component proteins
小,连续使用 11 次后固定化酶剩余酶活力为 61.1%。 and co-immobilization of binary-enzymes on CMK-3[D]. Dalian:
Liaoning Normal University (辽宁师范大学), 2013.
(3)固定化双酶动力学数据实验验证结果与双 [15] Gu Xujiong (顾旭炯). Studied on co-immobilization of two enzymes
酶动力学推导结果吻合,遵循 Lineweaver-burk 双倒 system and kinetics[D]. Hangzhou: Zhejiang University of
Technology (浙江工业大学), 2006.
数曲线的一般规律,其动力学反应速率取决于固定 [16] Tang Yulan (汤玉兰), Chen Zuanguang (陈缵光), Cheng Zhiyi (成志
毅). Research progress in multi-enzyme co-immobilization reaction
化乙醇脱氢酶的反应速率,即 V 2 。 systems[J]. China Biotechnology (中国生物工程杂志), 2015, 35(1):
使用磁性纳米颗粒为载体,制备的共固定化乙 82-87.
[17] Poojari Y, Clarson S J. Thermal stability of Candida antarctica,
醇脱氢酶和 NMN 转移酶,工艺简单,NADH 产率 lipase B immobilized on macroporous acrylic resin particles in
高,且共固定化双酶稳定性好,其双酶动力方程推 organic media[J]. Biocatalysis & Agricultural Biotechnology, 2013,
2(1): 7-11.
导与实验验证表明共固定化双酶反应体系符合米氏 [18] Liao Hongdong (廖红东). Immobilization of cellulases on magnetic
方程,具有较好的工业前景,如何防止共固定化酶 nanoparticles and construction of genetic transformation system for
cellulolyticfilamentous fungi[D]. Changsha: Hunan University (湖南
在多次使用后的聚沉以及如何在工业化中量产 大学), 2010.
NADH 有待进一步研究。 [19] Yu Daibing (余带兵), Li Hongmei (李红梅), Gao Lujiao (高露姣), et al.
Immobilizing alcohol dehydrogenase by magnetic nanoparticles[J].
Industrial Microbiology (工业微生物), 2019, 49(1): 26-32.
参考文献: [20] Garcíagarcía P, Rochamartin J, Fernandezlorente G, et al.
[1] Li Da (李达), Lun Yongzhi (伦永志), Zhou Shisheng (周士胜). Co-localization of oxidase and catalase inside a porous support to
Recent progress of NAD+/NADH metabolism[J]. Letters in improve the elimination of hydrogen peroxide: Oxidation of biogenic
Biotechnology (生物技术通讯), 2010, 21(1): 98-102. amines by amino oxidase from Pisum sativum[J]. Enzyme &
[2] Zhang Shanshan (张姗姗), Wang Yan (王彦), Li Dedong (李德东), Microbial Technology, 2018, 115: 73.
et al. Metabolism and function of NADH and NADPH[J]. Academic [21] Maria G, Khwayyir H H S, Dinculescu D. Derivation of pareto
Journal of Second Military Medical University (第二军医大学学报), optimal operating policies based on safety indices for a catalytic
2011, 32(11): 1239-1243. multi-tubular reactor used for nitrobenzene hydrogenation[J].
[3] Suye S I, Yokoyama S, Obayashi A. NADH production from NAD+ Chemical & Biochemical Engineering Quarterly, 2016, 30(3): 279- 290.
using malic enzyme of pseudomonas diminuta IFO-13182[J]. Journal [22] Jiang Hangyu (蒋航宇), Zhang Tao (张涛), Jiang Bo (江波), et al.
of Fermentation & Bioengineering, 1989, 68(5): 301-304. Preparation and characterization of immobilized arginine
[4] Šilhánková L, Adámková-Očenášková K, Machová Z. Production of deiminase[J]. Science and Technology of Food Industry (食品工业科
nadh by microbial reduction of added nad[J]. Biotechnology 技), 2017, (12): 129-134.
Techniques, 1992, 6(5): 455-460. [23] Li H, Xiao W, Xie P, et al. Co-immobilization of enoate reductase
[5] Itoh N, Matsuda M, Mabuchi M, et al. Chiral alcohol production by with a cofactor-recycling partner enzyme[J]. Enzyme Microb
NADH-dependent phenylacetaldehyde reductase coupled with in situ, Technol, 2018, 109: 66-73.
regeneration of NADH[J]. Febs Journal, 2010, 269(9): 2394- 2402. [24] Hui Ming (惠明), Dong Zhen (董贞), Tian Qing (田青), et al.
[6] Samuel N, Bao T, Zhang X, et al. Optimized whole cell biocatalyst Co-immobilization of glucose oxidase and catalase on carbon
from acetoin to 2, 3‐butanediol through coexpression of acetoin fiber[J]. Journal of Chinese Institute of Food Science and Technology
reductase with NADH regeneration systems in engineered Bacillus (中国食品学报), 2018, (3): 134-140.
subtilis[J]. Journal of Chemical Technology & Biotechnology, 2017, [25] Gao Jun (高军). Dynamic effects of PAEs on soil urease and
92(9): 2477-2487. phosphatase[J]. Agricultural Science & Technoligy, 2010, 11(2):
[7] Duan Lin-lin (段琳琳), Li Hong-mei (李红梅), He Hai (何海). 189-192.