Page 46 - 201907
P. 46

·1292·                            精细化工   FINE CHEMICALS                                  第 36 卷



































                                            图 4    二乙醇胺脱氢连续化新工艺流程图
                             Fig. 4    Continuous new process flow chart for dehydrogenation of diethanolamine

            回收 H 2 ;液相产物经过酸化结晶、过滤干燥即可得                             2017, 53(3): 597-600.
                                                               [10]  Takakiyo G, Hiromi Y, Hideyuki N, et al. Method for manufacture of
            到产品,或直接送入草甘膦生产工序。                                      amino-carboxylic acid salts: US4782183[P]. 1988-11-01.
                                                               [11]  Sunil  K  S,  Maneet  L,  Lata  N,  et al.  Synthesis  of  Cu/CNTs
            参考文献:                                                  nanocomposites  for  antimicrobial  activity[J].  Advances  in  Natural
            [1]   Wu Jun (伍君), Duan Zhengkang (段正康), Li Wenjuan (李文娟), et   Sciences Nanoscience & Nanotechnology, 2012, 3(4): 45011-45010.
                 al. Study on Cu-MoO 3-ZrO 2 catalysts for synthesis of iminodiacetic   [12]  Carotenuto G, Tesser R, Serio M D, et al. Kinetic study of ethanol
                 acid  from  diethanolamine  dehydrogenatio[J].  Jounral  of  Molecular   dehydrogenation  to  ethyl  acetate  promoted  by  a  copper/copper-
                 Catalysis (China) (分子催化), 2013, 27(6): 515-521.     chromite based catalyst[J]. Catalysis Today, 2013, 203: 202-210.
            [2]   Tian J P,  Shi  H,  Li  X,  et al.  Coupling  mass  balance  analysis  and   [13]  Dvaid A M,  Juan P A,  Howard C B,  et al.  Catalyst  for  dehydro-
                 multi-criteria  ranking  to  assess  the  commercial-scale  synthetic   genating primary alcohols: US8298985[P]. 2012-10-30.
                 alternatives: A case study on glyphosate[J]. Green Chemistry, 2012,   [14]  Morgenstern D A, Arhancet J P, Berk H C, et al. Process and catalyst
                 14(7): 1990-2000.                                 for dehydrogenating primary alcohols to make carboxylic acid salts:
            [3]   Yang Asan (杨阿三), Pan Yanfeng (潘炎峰), Sun Qin (孙勤), et al.   EP1272451B1[P]. 2012-08-01.
                 Reaction  kinetics  of  dehydrogenation  of  diethanolamine[J].  Journal   [15]  Sérgio  B  O,  Danns  P  B,  Ana  P  M  M,  et al.  Evaluation  of  copper
                 of Chemical Engineering of Chinese Universities (高校化学工程学  supported on polymeric spherical activated carbon in the ethylbenzene
                 报), 2010, 24(4): 590-595.                         dehydrogenation[J]. Catalysis Today, 2008, 133 (1): 92-98.
            [4]   Yang  Yunquan  (杨运泉),  Duan  Zhengkang  (段正康), Liu Wenying   [16]  Ekaterina A P, Irina V K, Ekaterina V E, et al. Dehydrogenation of
                 (刘文英),  et al.  A  Kinetic  study  on  the  synthesis  of  sodium   ethanol over carbon-supported Cu-Co catalysts modified by catalytic
                 aminoacetate  from  ethanolamine  by  catalytic  dehydrogenation[J].   chemical  vapor  deposition[J].  Reaction  Kinetics,  Mechanisms  and
                 Chemical  Reaction  Engineering  and  Technology  (化学反应工程与  Catalysis, 2017, 122(1): 399-408.
                 工艺), 2001, 17(3): 210-215.                    [17]  Paramita  M,  Arjyabaran  S,  Noor  S,  et al.  Enhanced  catalytic
            [5]   Neurock M, Tao Z Y, Chemburkar A, et al. Theoretical insights into   performance  by  copper  nanoparticle-graphene  based  composite[J].
                 the sites and mechanisms for base catalyzed esterification and aldol   RSC Advances, 2013, 3(16): 5615-5623.
                 condensation  reactions  over  Cu[J].  Faraday  Discuss,  2017,  197:   [18]  Katarzyna P, Agata S, Wiesława O, et al. Cu-rGO subsurface layer
                 59-86.                                            creation  on  copper  substrate  and  its  resistance  to  oxidation[J].
            [6]   Sato A G, Volanti D P, de Freitas I C, et al. Site- selective ethanol   Applied Surface Science, 2017, 421: 228-233.
                 conversion   over   supported   copper   catalysts[J].   Catalysis   [19]  Liu  S  Q,  Zhao  B,  Jiang  L.  Core-shell  Cu@rGO  hybrids  filled in
                 Communications, 2012, 26: 122-126.                epoxy  composites  with  high  thermal  conduction[J].  Journal  of
            [7]   Wang  L  X,  Zhu  W  C,  Zheng  D  F,  et al.  Direct  transformation  of   Materials Chemistry C, 2017, 6(2): 257-265.
                 ethanol  to  ethyl  acetate  on  Cu/ZrO 2  catalyst[J].  Reaction  Kinetics,   [20]  Zhang P, Wang Q N, Yang X, et al. A highly porous graphitic-N rich
                 Mechanisms and Catalysis, 2010, 101(2): 365- 375.     carbon  stabilized  copper  nanocatalysts  for  efficient  ethanol
            [8]   Zhu Y F, Kong X, Li X Q, et al. Cu nanoparticles inlaid mesoporous   dehydrogenation[J]. ChemCatChem, 2017, 9(3): 505-510.
                 Al 2O 3  as  a  high-performance  bifunctional  catalyst  for  ethanol   [21]  Shi R N,  Zhao J X,  Liu  S  S,  et al.  Nitrogen-doped  graphene
                 synthesis via  dimethyl  oxalate  hydrogenation[J].  ACS  Catalysis,   supported  copper  catalysts  for  methanol  oxidative  carbonylation:
                 2014, 4(10): 3612-3620.                           Enhancement of catalytic activity and stability by nitrogen species[J].
            [9]   Witzke M E,  Dietrich P J,  Ibrahim  M  Y  S,  et al.  Spectroscopic   Carbon, 2018, 130: 185-195.
                 evidence for origins of size and support effects on selectivity of Cu   [22]  Tang  Q  L,  Liu  Z  P.  Identification  of  the  active  Cu  phase  in  the
                 nanoparticle dehydrogenation catalysts[J]. Chemical Communications,   water-gas shift reaction over Cu/ZrO 2 from first principles[J]. Journal
   41   42   43   44   45   46   47   48   49   50   51