Page 47 - 201907
P. 47

第 7 期                  兰小林,等:  基于 Cu 基催化剂的二乙醇胺脱氢工艺的研究进展                                 ·1293·


                 of Physical Chemistry C, 2010, 114(18): 8423-8430.     [37]  Liao Peiyi (廖珮懿), Zhang Chen (张辰), Zhang Lijun (张丽君), et
            [23]  Agrell  J.  Production  of  hydrogen  from  methanol  over  Cu/ZnO   al.  Effect  of  promoter  and  CO 2  content  in  the  feed  on  the
                 catalysts promoted by ZrO 2 and Al 2O 3[J]. Journal of Catalysis, 2003,   performance  of  CuFeZr  catalyst  in  the  synthesis  of  higher  alcohol
                 219(2): 389-403.                                  from syngas[J]. Journal of Fuel Chemistry and Technology (燃料化
            [24]  Luo Aiwen (罗爱文), Duan Zhengkang (段正康), Zeng Hongyan (曾  学学报), 2017, 45(5): 547-555.
                 红艳 ).  Preparation  of  Cu/ZrO 2  catalyst  by  high  gravity  co-   [38]  Bonura G, Arena F, Mezzatesta G, et al. Role of the ceria promoter
                 precipitation  method[J].  Fine  Chemicals  (精细化工),  2011,  28(1):   and carrier on the functionality of Cu-based catalysts in the CO 2-to-
                 54-58.                                            methanol hydrogenation reaction[J]. Catalysis Today, 2011, 171(1):
            [25]  Rhodes M, Bell A. The effects of zirconia morphology on methanol   251-256.
                 synthesis from CO and H 2 over Cu/ZrO 2 catalysts Part I. Steady-state   [39]  Han  S  J,  Bang  Y,  Yoo  J.  et al.  Hydrogen  production  by  steam
                 studies[J]. Journal of Catalysis, 2005, 233(1): 198-209.     reforming  of  ethanol  over  mesoporous  Cu-Ni-Al 2O 3-ZrO 2  xerogel
            [26]  Sato A G, Volanti D P, Meira D M, et al. Effect of the ZrO 2 phase on   catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(4):
                 the  structure  and  behavior  of  supported  Cu  catalysts  for  ethanol   2554-2563.
                 conversion[J]. Journal of Catalysis, 2013, 307: 1-17.     [40]  Wang Guannan (王冠男),Chen Limin (陈礼敏), Guo Yuanyuan (郭
            [27]  Israf U D, Maizatul S S, Naeemc A, et al. Carbon nanofibers based   园园), et al. Effect of chromium doping on the catalytic behavior of
                 copper/zirconia  catalysts  for  carbon  dioxide  hydrogenation  to   Cu/ZrO 2/CNTs-NH 2  for  the  synthesis  of  methanol  from  carbon
                 methanol:  Effect  of  copper  concentration[J].  Chemical  Engineering   dioxide hydrogenation[J]. Acta Physico-Chimica Sinica (物理化学学
                 Journal, 2018, 334: 619-629.                      报), 2014, 30(5): 923-931.
            [28]  Sun Y H, Chen L M, Bao Y F, et al. Roles of nitrogen species on   [41]  Chen C S, Lai Y T, Lai T W, et al. Formation of Cu nanoparticles in
                 nitrogen-doped CNTs supported Cu-ZrO 2 system for carbon dioxide   SBA-15  functionalized  with  carboxylic  acid  groups  and  their
                 hydrogenation to methanol[J]. Catalysis Today, 2018, 307: 212-223.     application  in  the  water-gas  shift  reaction[J]. ACS  Catalysis, 2013,
            [29]  Wang G N, Chen L M, Sun Y H, et al. Carbon dioxide hydrogenation   3(4): 667-677.
                 to  methanol  over  Cu-ZrO 2/CNTs:  Effect  of  carbon  surface   [42]  Jorge G V, Marta D C R. Method of preparing amino-, imino-, and
                 chemistry[J]. RSC Advances, 2015, 5(56): 45320-45330.     nitriloearboxylic acids and silver-promoted copper catalyst for use in
            [30]  Li  Sheng  ( 李晟 ).  Study  on  the  preparation  of  Cu/ZrO 2-   said method: US6414188[P]. 2002-07-02.
                 GOcomposites and its catalytic performance[D], Xiangtan: Xiangtan   [43]  Zhang  S  J,  Zheng  Y  X,  Yuan  L  S,  et al.  Ni-B  amorphous  alloy
                 University (湘潭大学), 2016.                          nanoparticles  modified  nanoporous  Cu  toward  ethanol  oxidation  in
            [31]  Duan Zhengkang (段正康), Yin Ke (尹科), Zhu Hongwen (朱宏文),   alkaline medium[J]. Journal of Power Sources, 2014, 247: 428- 436.
                 et al.  The  preparation  method  and  application  thereof  of   [44]  Zhao Y G, Liu J J, Liu C G, et al. Amorphous CuPt alloy nanotubes
                 copper/zirconia-graphene composite carrier catalyst: CN 107349922   induced by Na 2S 2O 3 as efficient catalysts for the methanol oxidation
                 A [P]. 2017-11-17.                                eeaction[J]. ACS Catalysis, 2016, 6(7): 4127-4134.
            [32]  Duan  Zhengkang    (段正康),  Zhu  Hongwen  (朱宏文),  Yin  Ke  (尹  [45]  Zeng Xiaojun (曾小君), Yang Gaowen (杨高文), Yang Gang (杨刚),
                 科), et al. The preparation method and use thereof Cu/ZrO 2 catalyst:   et al.  Synthesis  of  iminodiacetic  acid  using  amorphous  alloy  as
                 CN 107442120A [P]. 2017-12-08.                    catalyst[J]. Fine Chemicals (精细化工), 2001, 18(10): 608-610.
            [33]  Wu G S, Mao D S, Lu G Z, et al. The role of the promoters in Cu   [46]  Wu Jun (伍君), Duan Zhengkang (段正康), Li Wenjuan (李文娟), et
                 based  catalysts  for  methanol  steam  reforming[J].  Catalysis  Letters,   al. Preparation and characterization of Cu/ZnO/Al 2O 3/ZrO 2 catalyst
                 2009, 130: 177-184.                               used in diethanolamine dehydrogenation[J]. Fine Chemicals(精细化
            [34]  Li Yanni (李艳妮), Xia Congqiao (夏从桥), Yang Yuanfa (杨元法),   工), 2013, 30(9): 1036-1040.
                 et al. Effect of Mn and La modified Cu/ZrO 2 catalyst for oxidation   [47]  Wang Wei (王伟), Zhou Shuguang (周曙光), Ren Bufan (任不凡), et
                 dehydrogenation from diethanolamine to iminodiacetic acid[J]. Fine   al.  Method  for  continuously  producing  iminodiacetic  acid  salt  :
                 Chemicals (精细化工), 2011, 28(6): 548-552.           CN102827013A[P]. 2012-12-19.
            [35]  Ding M Y, Qiu M H, Liu J G, et al. Influence of manganese promoter   [48]  Daniel A H, Katherine M, James W R. A continuous diethanolamine
                 on  co-precipitated  Fe-Cu  based  catalysts  for  higher  alcohols   dehydrogenation fixed bed catalyst and reactor system[J]. Chemical
                 synthesis[J]. Fuel, 2013, 109: 21-27.             Engineering Journal, 2015, 278: 447-453.
            [36]  Ding M Y, Tu J L, Qiu M H, et al. Impact of potassium promoter on   [49]  Andreev D V, Sergeev E E, Gribovskii A G, et al. Iminodiacetic acid
                 Cu-Fe  based  mixed  alcohols  synthesis  catalyst[J].  Applied  Energy,   synthesis  over  Cu/ZrO 2  catalyst  in  a  microchannel  flow  reactor[J].
                 2015, 138: 584-589.                               Chemical Engineering Journal, 2017, 330: 899-905.


            (上接第 1285 页)                                           Shandong Chemical Industry (山东化工), 2017, 46(22): 31-33.
                                                               [46]  Wang  Qing.  Research  progress  in  epoxy  resin  curing  agents[J].
            [41]  Li Junju, Huang Zhixiong. Research progress in epoxy resin aqueous   Tianjin Chemical Industry (天津化工), 2001, (6): 12-14.
                 method[C]//.  Proceedings  of  the  16th  Annual  Conference  on   [47]  Stark  C  J,  Stark  A  B  A  E,  Back  G  E,  et al.  Epoxy-functional
                 FRP/Composites  (第十六届玻璃钢/复合材料学术年会论文集),            amidoamine reacted with excess polyamine and monoepoxy as epoxy
                 2005: 75-78.
            [42]  Huang Kai (黄凯), Liang Liang (梁亮), Li Dan (李丹), et al. Study   curative: US6277928[P]. 2001-08-21.
                 on nonionic self-emulsifying waterborne epoxy emulsion[J]. Paint &   [48]  Deng  Hongxia  (邓红霞).  Synthesis  and  study  on  the  property  of  a
                 Coatings Industry (涂料工业), 2010, 40(9): 53-57.     curing agent for room temperature curing of a aqueous epoxy resin
            [43]  Xiong Yuanqin(熊远钦), Deng Hongxia(邓红霞), Peng Hua (彭  emulsion[D]. Changsha:Hunan University (湖南大学), 2009.
                 桦),  et al.  Synthesis  of  a  waterborne  epoxy  curing  agent  and  its   [49]  Liu Xiaofang (刘晓芳), Wang Rongwei (王荣威), Wei Ming (魏铭),
                 properties[J]. Journal of Hunan University(Natural Sciences), 2009,   et al.  Study  on  preparation,  properties  and  curing  mechanism  of
                 36(11):53-56.                                     nonionic self-emulsified waterborne epoxy curing agent[J]. Coating
            [44]  Wang Feng (王丰), Liu Yali (刘娅莉), Xu Longgui (徐龙贵), et al.   industry (涂料工业), 2017, 47(5): 44-50.
                 Research  progress  in  waterborne  epoxy  coating  curing  agents[J].   [50]  Xiao  Shuxin  (肖淑欣),  Jiang  Xiaoqin  (姜晓琴), Liu Xinhao  (刘新
                 Paint & Coatings Industry (涂料工业), 2004, (8): 29-33, 63.     浩), et al. Preparation of waterborne epoxy resin curing agentandits
            [45]  Kang Huihua (康惠花), Ma Shangquan (马尚权), Qian Rui (钱瑞).   compatibility with emulsion[J]. Coating industry (涂料工业), 2018,
                 Research  progress  of  waterborne  epoxy  resin  curing  agent[J].   48(3): 1-5.
   42   43   44   45   46   47   48   49   50   51   52