Page 67 - 精细化工2019年第8期
P. 67
第 8 期 王 成,等: 石墨烯/Sr 2 Ni 0.4 Co 1.6 O 6 复合材料的制备及其性能 ·1555·
参考文献: cells [J]. Journal of Power Sources, 2016, 313: 134-141.
[15] Wang S, Jin F, Li L, et al. Stability, compatibility and performance
[1] Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte
membrane fuel cells: Technology, applications, and needs on improvement of SrCo 0.8Fe 0.1Nb 0.1O 3−δ perovskite as a cathode for
fundamental research [J]. Applied Energy, 2011, 88(4): 981-1007. intermediate-temperature solid oxide fuel cells [J]. International
[2] Armaroli N, Balzani V. The future of energy supply: Challenges and Journal of Hydrogen Energy, 2017, 42(7): 4465-4477.
opportunities [J]. Angewandte Chemie International Edition, 2007, [16] Tomkiewicz A C, Meloni M, McIntosh S. On the link between bulk
46(1/2): 52-66. structure and surface activity of double perovskite based SOFC
[3] Minowa H, Hayashi M, Hayashi K, et al. Mn-Fe-based oxide cathodes [J]. Solid State Ionics, 2014, 260: 55-59.
electrocatalysts for air electrodes of lithium-air batteries [J]. Journal [17] Elumeeva K, Masa J, Sierau J, et al. Perovskite-based bifunctional
of Power Sources, 2013, 244: 17-22. electrocatalysts for oxygen evolution and oxygen reduction in
[4] Suntivich J, Gasteiger H A, Yabuuchi N, et al. Design principles for alkaline electrolytes [J]. Electrochimica Acta, 2016, 208: 25-32.
oxygen-reduction activity on perovskite oxide catalysts for fuel cells [18] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of
and metal–air batteries [J]. Nature chemistry, 2011, 3(7): 546-550. graphene nanosheets [J]. Nature Nanotechnology, 2008, 3(2): 101.
[5] Morimoto K, Nagashima I, Matsui M, et al. Improvement of [19] Zhao H, Chen C, Chen D, et al. Ba 0.95La 0.05FeO 3−δ-multi-layer
electrochemical properties and oxidation/reduction behavior of cobalt graphene as a low-cost and synergistic catalyst for oxygen evolution
in positive electrode of Ni-metal hydride battery [J]. Journal of reaction [J]. Carbon, 2015, 90: 122-129.
Power Sources, 2018, 388: 45-51. [20] Wu Yanbo (吴艳波), Bi Jun (毕军), Wei Binbin (魏斌斌).
[6] Wei Z, Cui Y, Huang K, et al. Fabrication of La 2NiO 4 nanoparticles Preparation and supercapacitor properties of double-perovskite
as an efficient bifunctional cathode catalyst for rechargeable lithium- La 2CoNiO 6 inorganic nanofibers [J]. Acta Physico-Chimica Sinica
oxygen batteries [J]. RSC Advances, 2016, 6(21): 17430-17437. (物理化学学报), 2015, 31(2): 315-321.
[7] Wang Ying (王瀛), Zhang Limin (张丽敏), Hu Tianjun (胡天军).
[21] Hu J, Wang L, Shi L, et al. Preparation of La 1−xCa xMnO 3 perovskite-
Progress in oxygen reduction reaction electrocatalysts for metal-air
graphene composites as oxygen reduction reaction electrocatalyst in
batteries [J]. Acta Chim Sinica (化学学报), 2015, 73(4): 316-325.
alkaline medium [J]. Journal of Power Sources, 2014, 269: 144-151.
[8] Lu J, Cheng L, Lau K C, et al. Effect of the size-selective silver
[22] Holzwarth U, Gibson N. The Scherrer equation versus the'Debye-
clusters on lithium peroxide morphology in lithium-oxygen batteries
Scherrer equation' [J]. Nature Nanotechnology, 2011, 6(9): 534.
[J]. Nature Communications, 2014, 5: 4895.
[23] Wang Jiande (汪建德), Peng Tongjiang (彭同江), Xian Haiyang (鲜
[9] Yamamoto K, Imaoka T, Chun W J, et al. Size-specific catalytic
海洋 ), et al. Preparation and supercapacitive performance of
activity of platinum clusters enhances oxygen reduction reactions [J].
three-dimensional reduced graphene oxide/polyaniline composite [J].
Nature Chemistry, 2009, 1(5): 397-402.
Acta Physico-Chimica Sinica (物理化学学报), 2015, 31(1): 90-98.
[10] Zhuang Shuxin (庄树新), Lv Jianxian (吕建先), Lu Mi (路密), et al.
[24] Ito J, Nakamura J, Natori A. Semiconducting nature of the
Preparation and applications of perovskite-type oxides as electrode
oxygen-adsorbed graphene sheet [J]. Journal of Applied Physics,
materials for solid oxide fuel cell and metal-air battery [J]. Progress
2008, 103(11): 113712.
in Chemistry (化学进展), 2015, 27(4): 436-447.
[25] Wu Z, Sun L P, Xia T, et al. Effect of Sr doping on the electrochemical
[11] Sun N, Liu H, Yu Z, et al. The electrochemical performance of
properties of bi-functional oxygen electrode PrBa 1−xSr xCo 2O 5+δ [J].
La 0.6Sr 0.4Co 1-xNi xO 3 perovskite catalysts for LiO 2 batteries [J]. Ionics,
2016, 22(6): 869-876. Journal of Power Sources, 2016, 334: 86-93.
[12] Zhou Q, Cheng Y, Li W, et al. Investigation of cobalt-free perovskite [26] Zhuang S, Huang C, Huang K, et al. Preparation of homogeneous
Sr 2FeTi 0.75Mo 0.25O 6−δ as new cathode for solid oxide fuel cells [J]. nanoporous La 0.6Ca 0.4CoO 3 for bi-functional catalysis in an alkaline
Materials Research Bulletin, 2016, 74: 129-133. electrolyte [J]. Electrochemistry Communications, 2011, 13(4): 321-324.
[13] Li C, Wang W, Zhao N, et al. Structure properties and catalytic [27] Molina-García M A, Rees N V. Dual-doped graphene/perovskite
performance in methane combustion of double perovskites bifunctional catalysts and the oxygen reduction reaction [J].
Sr 2Mg 1−xMn xMoO 6−δ [J]. Applied Catalysis B: Environmental, 2011, Electrochemistry Communications, 2017, 84: 65-70.
102(1/2): 78-84. [28] Cheriti M, Kahoul A. Double perovskite oxides Sr 2MMoO 6 (M= Fe
[14] Fu D, Jin F, He T. A-site calcium-doped Pr 1−xCa xBaCo 2O 5+δ double and Co) as cathode materials for oxygen reduction in alkaline
perovskites as cathodes for intermediate-temperature solid oxide fuel medium [J]. Materials Research Bulletin, 2012, 47(1): 135-141.