Page 51 - 精细化工2019年第9期
P. 51

第 9 期                   彭盼盼,等:  乙烯基硅改性丙烯酸树脂水分散体的制备及性能                                   ·1779·


                 coatings[J]. Progress in Organic Coatings, 2014, 77: 757-764.   characterization,  and  properties[J].  Journal  of  Applied  Polymer
            [5]   Saalah  S,  AbdullahH  L  C,  Aung  M  M.  Waterborne  polyurethane   Science, 2017, 134(44): 488-496.
                 dispersions  synthesized  from  jatropha  oil[J].  Industrial  Crops  and   [13]  Dong  R,  Liu  L.  Preparation  and  properties  of  acrylic  resin  coating
                 Products, 2015, 64: 194-200.                      modified by functional graphene oxide[J]. Applied Surface Science,
            [6]   Wu  G,  Liu  G,  Chen  J.  Preparation  and  properties  of  thermoset   2016, 368: 378-387.
                 composite films from two-component waterborne polyurethane with   [14]  Li  P,  Zhou  Z,  Ma  W, et al.  Core-shell  emulsion polymerization  of
                 low  loading  level  nanofibrillated  cellulose[J].  Progress  in  Organic   styrene and butyl acrylate in the presence of polymerizable emulsifier[J].
                 Coatings, 2017, 106: 170-176.                     Journal of Applied Polymer Science, 2016, 133(12): 1-7.
            [7]   Zhang  D,  Williams  B  L,  Beche  E  M.  Becher,  flame  retardant  and   [15]  Shen Yuxin (沈宇新), Liu Zhiqiang (刘志强), Wang Xinbo (王新波),
                 hydrophobic  cottonfabrics  from  intumescent  coatings[J].  Advanced   et al. Synthesis and antifouling properties of modified polyacrylate resin
                 Composites and Hybrid Materials, 2018, 1: 177-184.   of  low  surface  energy[J].  Surface  Technology  (表面技术),  2017,
            [8]   Lin J, Chen X, Chen C. Durably antibacterial and bacterially antiadhesive   46(10): 15-21.
                 cotton fabrics coated by cationic fluorinated polymers[J]. ACS Applied   [16]  Yang  Shaoyan  (杨少艳),  Zhao  Zhenhe  (赵振河). Synthesis and
                 Materials & Interfaces, 2018, 10: 6124-6136.      characterizationof  silicone  modified  polyacrylate  adhesives[J].
            [9]   Dai J, Ma S, Wu Y. High bio-based content waterborne UV-curable   Silicone Material (有机硅材料), 2014, 28(3): 162-166.
                 coatings  with  excellent  adhesion  and  flexibility[J].  Progress  in   [17]  Shen Y, Du C, Zhou J. Aqueous polyacrylate/ poly(silicone-co-acrylate)
                 Organic Coatings, 2015, 87:197-203.               emulsion  coated  fertilizers  for  slow  nutrient-release  application[J].
            [10]  Wu Zhanmin (吴战民), Zhang Shaofei (张少飞), He Yufeng (何玉  Journal of Applied Polymer Science, 2014, 131(12): 369-374.
                 凤 ),  et al.  Preparation  of  waterborne  polyurethane-polyacrylate   [18]  Gao Haiping (高海平), Lin Cunguo (蔺存国), Wang Li (王利), et al.
                 miniemulsion and its application in humidity controlling coatings[J].   Preparation  and  characterization  of  surface  of  acrylate  modified
                 Fine Chemicals (精细化工), 2014, 31(5): 649-653, 662.   silicone  resin  microstructure  coating[J].  Coatings  Industry  (涂料工
            [11]  Lei M, Mark D S, Zhen L. Investigation of a non-isocyanate urethane   业), 2014, 44(12): 12-16.
                 functional  monomer  in  latexes  by  emulsion  polymerization[J].   [19]  He Longqiang (贺龙强), Fu Keming (付克明), Liu Zhongyang (刘中
                 Polymer, 2017, 119: 83-97.                        阳), et al. Preparation and agricultural application of environmentally
            [12]  Yi  T  F,Ma G  Z,Hao X G,  et al.  Polyurethane-acrylic  hybrid   friendly super absorbent resin[J]. Jiangsu Agricultural Sciences (江苏
                 emulsions  with  high  acrylic/polyurethane  ratios:  Synthesis,   农业科学), 2019, 47(2): 306-309.

            (上接第 1772 页)                                       [15]  Pimentel  B  R,  Parulkar  A,  Zhou  E,  et al.  Zeolitic  imidazolate
                                                                   frameworks:  Next-generation  materials  for  energy-efficient  gas
            [4]   Bazak  R,  Houri  M,  El  A  S,  et al.  Cancer  active  targeting  by   separations[J]. Chemsuschem, 2015, 7(12): 3202-3240.
                 nanoparticles:  Sive  review  of  literature[J].  Journal  of  Cancer   [16]  Yang J, Zhang F, Lu H, et al. Hollow Zn/Co ZIF particles derived
                 Research and Clinical Oncology, 2015, 141(5): 769-784.     from  core-shell  ZIF-67@ZIF-8  as  selective  catalyst  for  the  semi-
            [5]   Zheng H, Zhang Y, Liu L, et al. One-pot synthesis of metal-organic   hydrogenation  of  acetylene[J].  Angewandte  Chemie  International
                 frameworks with encapsulated target molecules and their applications   Edition In English, 2015, 127(37): 11039-11043.
                 for  controlled  drug  delivery[J].  Journal  of  the  American  Chemical   [17]  Yang L, Yu L, Sun M, et al. Zeolitic imidazole framework-67 as an
                 Society, 2015, 138(3): 962-968.                   efficient  heterogeneous  catalyst  for  the  synthesis  of  ethyl  methyl
            [6]   Zhuang  J,  Kuo  C  H,  Chou  L  Y,  et al.  Optimized  metal-organic-   carbonate[J]. Catalysis Communications, 2014, 54: 86-90.
                 framework  nanospheres  for  drug  delivery:  Evaluation  of  small-   [18]  Meng F, Zhong Y, Cheng R, et al. pH-sensitive polymeric nanoparticles
                 molecule encapsulation[J]. Acs Nano, 2014, 8(3): 2812-2819.     for  tumor-targeting  doxorubicin  delivery:  Concept  and  recent
            [7]   Parhi P, Mohanty C, Sahoo S K. Nanotechnology-based combinational   advances[J]. Nanomedicine, 2014, 9(3): 487-499.
                 drug  delivery:  An  emerging  approach  for  cancer  therapy[J].  Drug   [19]  Bhattacharyya S, Han R, Kim W G, et al. Acid gas stability of zeolitic
                 Discovery Today, 2012, 17(17/18): 1044-1052.      imidazolate  frameworks:  Generalized  kinetic  and  thermodynamic
            [8]   Karimi  M,  Ghasemi  A,  Zangabad  P  S,  et al.  Smart  micro/   characteristics[J]. Chemistry of Materials, 2018, 30(12): 4089-4101.
                 nanoparticles  in  stimulus-responsive  drug/gene  delivery  systems[J].   [20]  Kanamala  M,  Wilson  W  R,  Yang  M,  et al.  Mechanisms  and
                 Chemical Society Reviews, 2016, 45(5): 1457-1501.     biomaterials  in  pH-responsive  tumour  targeted  drug  delivery:
            [9]   Phan A, Doonan C J, Uriberomo F J, et al. Synthesis, structure, and   aAreview[J]. Biomaterials, 2016, 85: 152-167.
                 carbon dioxide capture properties of zeolitic imidazolate frameworks   [21]  Liu  J,  Zhong  L,  Zhang  J,  et al.  Hollow  mesoporous  silica
                 [J]. Accounts of Chemical Research, 2010, 43(1): 58-67.     nanoparticles  facilitated  drug  delivery  via  cascade  pH  stimuli  in
            [10]  Yao J, Wang H. Zeolitic imidazolate framework composite membranes   tumor  microenvironment  for  tumor  therapy[J].  Biomaterials,  2016,
                 and  thin  films:  Synthesis  and  applications[J].  Chemical  Society   83: 51-65.
                 Reviews, 2014, 43(13): 4470-4493.             [22]  Nordin  N  A  H  M,  Ismail  A  F,  Mustafa  A,  et al.  Aqueous  room
            [11]  Chen  B,  Yang  Z,  Zhu  Y,  et al.  Zeolitic  imidazolate  framework   temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with
                 materials: recent progress in synthesis and applications[J]. Journal of   various  concentrations  of  triethylamine[J].  RSC  Advances,  2014,
                 Materials Chemistry A, 2014, 2(40): 16811-16831.     4(63): 33292-33300.
            [12]  Banerjee  R,  Phan  A,  Wang  B,  et al.  High-throughput  synthesis  of   [23]  Pan Y, Liu Y, Zeng G, et al. Rapid synthesis of zeolitic imidazolate
                 zeolitic  imidazolate  frameworks  and  application  to  CO 2  capture[J].   framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical
                 Science, 2008, 319(5865): 939-943.                Communications, 2011, 47(7): 2071-2073.
            [13]  Qian J, Sun F, Qin L. Hydrothermal synthesis of zeolitic imidazolate   [24]  Chinese Pharmacopoeia Commission (国家药典委员会). Pharmacopoeia
                 framework-67  (ZIF-67)  nanocrystals[J].  Materials  Letters,  2012,   of  the  People’s  Republic  of  China[M].  Beijing  :  China  Medical
                 82(9): 220-223.                                   Science Press (中国医药科技出版社), 2015, 4: 121-124.
            [14]  Wang  B,  Côté  A  P,  Furukawa  H,  et al.  Colossal  cages  in  zeolitic   [25]  Howarth A J, Peters A W, Vermeulen N A, et al. Best practices for the
                 imidazolate  frameworks  as  selective  carbon  dioxide  reservoirs[J].   synthesis, activation, and characterization of metal-organic frameworks
                 Nature, 2008, 453(7192): 207-211.                 [J]. Chemistry of Materials, 2017, 29(1): 26-39.
   46   47   48   49   50   51   52   53   54   55   56