Page 51 - 精细化工2019年第9期
P. 51
第 9 期 彭盼盼,等: 乙烯基硅改性丙烯酸树脂水分散体的制备及性能 ·1779·
coatings[J]. Progress in Organic Coatings, 2014, 77: 757-764. characterization, and properties[J]. Journal of Applied Polymer
[5] Saalah S, AbdullahH L C, Aung M M. Waterborne polyurethane Science, 2017, 134(44): 488-496.
dispersions synthesized from jatropha oil[J]. Industrial Crops and [13] Dong R, Liu L. Preparation and properties of acrylic resin coating
Products, 2015, 64: 194-200. modified by functional graphene oxide[J]. Applied Surface Science,
[6] Wu G, Liu G, Chen J. Preparation and properties of thermoset 2016, 368: 378-387.
composite films from two-component waterborne polyurethane with [14] Li P, Zhou Z, Ma W, et al. Core-shell emulsion polymerization of
low loading level nanofibrillated cellulose[J]. Progress in Organic styrene and butyl acrylate in the presence of polymerizable emulsifier[J].
Coatings, 2017, 106: 170-176. Journal of Applied Polymer Science, 2016, 133(12): 1-7.
[7] Zhang D, Williams B L, Beche E M. Becher, flame retardant and [15] Shen Yuxin (沈宇新), Liu Zhiqiang (刘志强), Wang Xinbo (王新波),
hydrophobic cottonfabrics from intumescent coatings[J]. Advanced et al. Synthesis and antifouling properties of modified polyacrylate resin
Composites and Hybrid Materials, 2018, 1: 177-184. of low surface energy[J]. Surface Technology (表面技术), 2017,
[8] Lin J, Chen X, Chen C. Durably antibacterial and bacterially antiadhesive 46(10): 15-21.
cotton fabrics coated by cationic fluorinated polymers[J]. ACS Applied [16] Yang Shaoyan (杨少艳), Zhao Zhenhe (赵振河). Synthesis and
Materials & Interfaces, 2018, 10: 6124-6136. characterizationof silicone modified polyacrylate adhesives[J].
[9] Dai J, Ma S, Wu Y. High bio-based content waterborne UV-curable Silicone Material (有机硅材料), 2014, 28(3): 162-166.
coatings with excellent adhesion and flexibility[J]. Progress in [17] Shen Y, Du C, Zhou J. Aqueous polyacrylate/ poly(silicone-co-acrylate)
Organic Coatings, 2015, 87:197-203. emulsion coated fertilizers for slow nutrient-release application[J].
[10] Wu Zhanmin (吴战民), Zhang Shaofei (张少飞), He Yufeng (何玉 Journal of Applied Polymer Science, 2014, 131(12): 369-374.
凤 ), et al. Preparation of waterborne polyurethane-polyacrylate [18] Gao Haiping (高海平), Lin Cunguo (蔺存国), Wang Li (王利), et al.
miniemulsion and its application in humidity controlling coatings[J]. Preparation and characterization of surface of acrylate modified
Fine Chemicals (精细化工), 2014, 31(5): 649-653, 662. silicone resin microstructure coating[J]. Coatings Industry (涂料工
[11] Lei M, Mark D S, Zhen L. Investigation of a non-isocyanate urethane 业), 2014, 44(12): 12-16.
functional monomer in latexes by emulsion polymerization[J]. [19] He Longqiang (贺龙强), Fu Keming (付克明), Liu Zhongyang (刘中
Polymer, 2017, 119: 83-97. 阳), et al. Preparation and agricultural application of environmentally
[12] Yi T F,Ma G Z,Hao X G, et al. Polyurethane-acrylic hybrid friendly super absorbent resin[J]. Jiangsu Agricultural Sciences (江苏
emulsions with high acrylic/polyurethane ratios: Synthesis, 农业科学), 2019, 47(2): 306-309.
(上接第 1772 页) [15] Pimentel B R, Parulkar A, Zhou E, et al. Zeolitic imidazolate
frameworks: Next-generation materials for energy-efficient gas
[4] Bazak R, Houri M, El A S, et al. Cancer active targeting by separations[J]. Chemsuschem, 2015, 7(12): 3202-3240.
nanoparticles: Sive review of literature[J]. Journal of Cancer [16] Yang J, Zhang F, Lu H, et al. Hollow Zn/Co ZIF particles derived
Research and Clinical Oncology, 2015, 141(5): 769-784. from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-
[5] Zheng H, Zhang Y, Liu L, et al. One-pot synthesis of metal-organic hydrogenation of acetylene[J]. Angewandte Chemie International
frameworks with encapsulated target molecules and their applications Edition In English, 2015, 127(37): 11039-11043.
for controlled drug delivery[J]. Journal of the American Chemical [17] Yang L, Yu L, Sun M, et al. Zeolitic imidazole framework-67 as an
Society, 2015, 138(3): 962-968. efficient heterogeneous catalyst for the synthesis of ethyl methyl
[6] Zhuang J, Kuo C H, Chou L Y, et al. Optimized metal-organic- carbonate[J]. Catalysis Communications, 2014, 54: 86-90.
framework nanospheres for drug delivery: Evaluation of small- [18] Meng F, Zhong Y, Cheng R, et al. pH-sensitive polymeric nanoparticles
molecule encapsulation[J]. Acs Nano, 2014, 8(3): 2812-2819. for tumor-targeting doxorubicin delivery: Concept and recent
[7] Parhi P, Mohanty C, Sahoo S K. Nanotechnology-based combinational advances[J]. Nanomedicine, 2014, 9(3): 487-499.
drug delivery: An emerging approach for cancer therapy[J]. Drug [19] Bhattacharyya S, Han R, Kim W G, et al. Acid gas stability of zeolitic
Discovery Today, 2012, 17(17/18): 1044-1052. imidazolate frameworks: Generalized kinetic and thermodynamic
[8] Karimi M, Ghasemi A, Zangabad P S, et al. Smart micro/ characteristics[J]. Chemistry of Materials, 2018, 30(12): 4089-4101.
nanoparticles in stimulus-responsive drug/gene delivery systems[J]. [20] Kanamala M, Wilson W R, Yang M, et al. Mechanisms and
Chemical Society Reviews, 2016, 45(5): 1457-1501. biomaterials in pH-responsive tumour targeted drug delivery:
[9] Phan A, Doonan C J, Uriberomo F J, et al. Synthesis, structure, and aAreview[J]. Biomaterials, 2016, 85: 152-167.
carbon dioxide capture properties of zeolitic imidazolate frameworks [21] Liu J, Zhong L, Zhang J, et al. Hollow mesoporous silica
[J]. Accounts of Chemical Research, 2010, 43(1): 58-67. nanoparticles facilitated drug delivery via cascade pH stimuli in
[10] Yao J, Wang H. Zeolitic imidazolate framework composite membranes tumor microenvironment for tumor therapy[J]. Biomaterials, 2016,
and thin films: Synthesis and applications[J]. Chemical Society 83: 51-65.
Reviews, 2014, 43(13): 4470-4493. [22] Nordin N A H M, Ismail A F, Mustafa A, et al. Aqueous room
[11] Chen B, Yang Z, Zhu Y, et al. Zeolitic imidazolate framework temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with
materials: recent progress in synthesis and applications[J]. Journal of various concentrations of triethylamine[J]. RSC Advances, 2014,
Materials Chemistry A, 2014, 2(40): 16811-16831. 4(63): 33292-33300.
[12] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of [23] Pan Y, Liu Y, Zeng G, et al. Rapid synthesis of zeolitic imidazolate
zeolitic imidazolate frameworks and application to CO 2 capture[J]. framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical
Science, 2008, 319(5865): 939-943. Communications, 2011, 47(7): 2071-2073.
[13] Qian J, Sun F, Qin L. Hydrothermal synthesis of zeolitic imidazolate [24] Chinese Pharmacopoeia Commission (国家药典委员会). Pharmacopoeia
framework-67 (ZIF-67) nanocrystals[J]. Materials Letters, 2012, of the People’s Republic of China[M]. Beijing : China Medical
82(9): 220-223. Science Press (中国医药科技出版社), 2015, 4: 121-124.
[14] Wang B, Côté A P, Furukawa H, et al. Colossal cages in zeolitic [25] Howarth A J, Peters A W, Vermeulen N A, et al. Best practices for the
imidazolate frameworks as selective carbon dioxide reservoirs[J]. synthesis, activation, and characterization of metal-organic frameworks
Nature, 2008, 453(7192): 207-211. [J]. Chemistry of Materials, 2017, 29(1): 26-39.