Page 111 - 《精细化工》2020年第1期
P. 111
第 1 期 杨 浩,等: TiO 2 -GO 催化 DMC 与苯酚酯交换合成碳酸二苯酯 ·97·
employing phosgene:An overview on catalytic chemistry of photocatalyst promoter[J]. Catalysis Communications, 2016, 74:
intermediate and precursor syntheses for polycarbonate[J]. Industrial 104-109.
& Engineering Chemistry Research, 2004, 43(9): 1897-1914. [16] Shi P H, Dai X F, Zheng H A, et al. Synergistic catalysis of Co 3O 4
[3] Wang Gongying (王公应), Liu Shaoying (刘绍英), Chen Tong (陈 and graphene oxide on Co 3O 4/GO catalysts for degradation of
彤), et al. Progress in the green synthesis technology of carbonate[J]. Orange II in water by advanced oxidation technology based on
Fine Chemicals (精细化工), 2013, 30(4): 420-424. sulfate radicals[J]. Chemical Engineering Journal, 2014, 240: 264-
[4] Joshi U A, Choi S H, Jang J S, et al. Transesterification of 270.
dimethylcarbonate and phenol over silica supported TiO 2 and [17] Kumar S, Kumar P, Deb A, et al. Graphene oxide grafted with
Ti-MCM 41 catalysts:Structure in sensitivity[J]. Catalysis Letters, iridium complex as a superior heterogeneous catalyst for chemical
2008, 123(1/2): 115-122. fixation of carbon dioxide to dimethylformamide[J]. Carbon, 2016,
[5] Tang R Z, Chen T, Chen Y, et al. Core-shell TiO 2@SiO 2 catalyst for 100: 632-640.
transesterification of dimethyl carbonate and phenol to diphenyl [18] Gonbeau D, Guimon C, Pfister-Guillouzo G, et al. XPS study of thin
carbonate[J]. Chinese Journal of Catalysis, 2014, 35(4): 457-461. films of titanium oxysulfides[J]. Surface Science, 1991, 254(1):
[6] Tong D S, Yao J, Wang Y, et al. Transesterification of dimethyl 81-89.
carbonate with phenol to diphenyl carbonate over V 2O 5 catalyst[J]. [19] Chan C M, Trigwell S, Duerig T. Oxidation of an NiTi alloy[J].
Journal of Molecular Catalysis A:Chemical, 2007, 268(1/2): 120-126. Surface and Interface Analysis, 1990, 15(6): 349-354.
[7] Zhou X, Ge X, Tang R Z, et al. Preparation and catalytic property of [20] Coppens P, Chen Y, Trzop E. Crystallography and properties of
modified multi-walled carbon nanotube-supported TiO 2 for the polyoxotitanate nanoclusters[J]. Chemical Reviews, 2014, 114(19):
transesterification of dimethyl carbonate with phenol[J]. Chinese 9645-9661.
Journal of Catalysis, 2014, 35(4): 481-489. [21] Rozes L, Sanchez C. Titanium oxo-clusters:Precursors for a Lego-like
[8] Niu H Y, Yao J, Wang Y, et al. Transesterification of dimethyl construction of nanostructured hybrid materials[J]. Chemical Society
carbonate and phenol to diphenyl carbonate catalyzed by titanocene Reviews, 2011, 40(2): 1006-1030.
complexes[J]. Catalysis Communications, 2007, 8(3): 355-358. [22] Rozes L, Steunou N, Fornasieri G, et al. Titanium-oxo clusters,
[9] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of versatile nanobuilding blocks for the design of advanced hybrid
suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63. materials[J]. Monatshefte für Chemie-Chemical Monthly, 2006,
[10] Sun Y Y, Zhang W H, Chi H J, et al. Recent development of 137(5): 501-528.
graphene materials applied in polymer solar cell[J]. Renewable & [23] Zhang X B, Tian H M, Wang X Y, et al. The role of oxygen
3+
Sustainable Energy Reviews, 2015, 43: 973-980. vacancy-Ti states on TiO 2 nanotubes' surface in dye-sensitized solar
[11] Ye B, Lee M, Jeong B, et al. Partially reduced graphene oxide as a cells[J]. Materials Letters, 2013, 100: 51-53.
support of Mn-Ce/TiO 2 catalyst for selective catalytic reduction of [24] Arena F, Dario R, Parmaliana A. A characterization study of the
NO x with NH 3[J]. Catalysis Today, 2019, 328: 300-306. surface acidity of solid catalysts by temperature programmed
[12] Geim A K, Novoselov K S. The rise of graphene[J]. Nature methods[J]. Applied Catalysis A:General, 1998, 170(1): 127-137.
Materials, 2007, 6(3): 183-191. [25] Zhuo G L, Jiang X Z. An attractive synthetic approach to methyl
[13] Xue Bing (薛冰), Liu Xiangmei (刘香梅), Liu Na (柳娜), et al. High formate from methanol via methyl nitrite[J]. Catalysis Letters, 2002,
efficient aqueous ammonia modified graphene oxide for knoevenagel 80(3): 171-174.
condensation[J]. Fine Chemicals (精细化工), 2018, 35(9): 1529- [26] Chen T, Han H J, Yao J, et al. The transesterification of dimethyl
1534, 1541. carbonate and phenol catalyzed by 12-molybdophosphoric salts[J].
[14] Zhu M S, Chen P L, Liu M H. High-performance visible-light-driven Catalysis Communications, 2007, 8(9): 1361-1365.
plasmonic photocatalysts Ag/AgCl with controlled size and shape [27] Blanco-Bonilla F, Lopez-Pedrajas S, Luna D, et al. Vanadium oxides
using graphene oxide as capping agent and catalyst promoter[J]. supported on amorphous aluminum phosphate: Structural and
Langmuir, 2013, 29(29): 9259-9268. chemical characterization and catalytic performance in the 2-propanol
[15] Wei S, Zhang R, Liu Y, et al. Graphene quantum dots prepared from reaction[J]. Journal of Molecular Catalysis A: Chemical, 2016, 416:
chemical exfoliation of multiwall carbon nanotubes:An efficient 105-116.