Page 111 - 《精细化工》2020年第1期
P. 111

第 1 期                   杨   浩,等: TiO 2 -GO 催化 DMC 与苯酚酯交换合成碳酸二苯酯                           ·97·


                 employing  phosgene:An  overview  on  catalytic  chemistry  of   photocatalyst  promoter[J].  Catalysis  Communications,  2016,  74:
                 intermediate and precursor syntheses for polycarbonate[J]. Industrial   104-109.
                 & Engineering Chemistry Research, 2004, 43(9): 1897-1914.   [16]  Shi P H, Dai X F, Zheng H A, et al. Synergistic catalysis of Co 3O 4
            [3]   Wang Gongying (王公应), Liu Shaoying (刘绍英), Chen Tong (陈  and  graphene  oxide  on  Co 3O 4/GO  catalysts  for  degradation  of
                 彤), et al. Progress in the green synthesis technology of carbonate[J].   Orange  II  in  water  by  advanced  oxidation  technology  based  on
                 Fine Chemicals (精细化工), 2013, 30(4): 420-424.      sulfate  radicals[J].  Chemical  Engineering  Journal, 2014,  240: 264-
            [4]   Joshi  U  A, Choi S H,  Jang  J  S, et al.  Transesterification  of   270.
                 dimethylcarbonate  and  phenol  over  silica  supported  TiO 2 and   [17]  Kumar S,  Kumar  P, Deb A,  et al.  Graphene  oxide  grafted  with
                 Ti-MCM  41  catalysts:Structure  in  sensitivity[J].  Catalysis  Letters,   iridium  complex  as  a  superior  heterogeneous  catalyst  for  chemical
                 2008, 123(1/2): 115-122.                          fixation  of  carbon  dioxide  to  dimethylformamide[J].  Carbon, 2016,
            [5]   Tang R Z, Chen T, Chen Y, et al. Core-shell TiO 2@SiO 2 catalyst for   100: 632-640.
                 transesterification  of  dimethyl  carbonate  and  phenol  to  diphenyl   [18]  Gonbeau D, Guimon C, Pfister-Guillouzo G, et al. XPS study of thin
                 carbonate[J]. Chinese Journal of Catalysis, 2014, 35(4): 457-461.   films  of  titanium  oxysulfides[J].  Surface  Science,  1991,  254(1):
            [6]   Tong  D  S,  Yao  J,  Wang  Y,  et al.  Transesterification  of  dimethyl   81-89.
                 carbonate with phenol to diphenyl carbonate over V 2O 5 catalyst[J].   [19]  Chan  C  M,  Trigwell  S,  Duerig  T.  Oxidation  of  an  NiTi  alloy[J].
                 Journal of Molecular Catalysis A:Chemical, 2007, 268(1/2): 120-126.   Surface and Interface Analysis, 1990, 15(6): 349-354.
            [7]   Zhou X, Ge X, Tang R Z, et al. Preparation and catalytic property of   [20]  Coppens  P,  Chen  Y,  Trzop  E.  Crystallography  and  properties of
                 modified  multi-walled  carbon  nanotube-supported  TiO 2 for the   polyoxotitanate  nanoclusters[J].  Chemical  Reviews, 2014,  114(19):
                 transesterification  of  dimethyl  carbonate  with  phenol[J].  Chinese   9645-9661.
                 Journal of Catalysis, 2014, 35(4): 481-489.   [21]  Rozes L, Sanchez C. Titanium oxo-clusters:Precursors for a Lego-like
            [8]   Niu  H  Y,  Yao  J,  Wang  Y, et al.  Transesterification  of  dimethyl   construction of nanostructured hybrid materials[J]. Chemical Society
                 carbonate and phenol to diphenyl carbonate catalyzed by titanocene   Reviews, 2011, 40(2): 1006-1030.
                 complexes[J]. Catalysis Communications, 2007, 8(3): 355-358.   [22]  Rozes  L,  Steunou  N,  Fornasieri  G,  et al.  Titanium-oxo  clusters,
            [9]   Meyer  J  C,  Geim  A  K,  Katsnelson  M  I,  et al.  The  structure  of   versatile  nanobuilding  blocks  for  the  design  of  advanced  hybrid
                 suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63.   materials[J].  Monatshefte  für  Chemie-Chemical  Monthly,  2006,
            [10]  Sun  Y  Y,  Zhang  W  H,  Chi  H  J, et al.  Recent  development  of   137(5): 501-528.
                 graphene  materials  applied  in  polymer  solar  cell[J].  Renewable  &   [23]  Zhang  X  B,  Tian  H  M,  Wang  X  Y,  et al.  The  role  of  oxygen
                                                                          3+
                 Sustainable Energy Reviews, 2015, 43: 973-980.    vacancy-Ti  states on TiO 2 nanotubes' surface in dye-sensitized solar
            [11]  Ye B, Lee M, Jeong B, et al. Partially reduced graphene oxide as a   cells[J]. Materials Letters, 2013, 100: 51-53.
                 support  of  Mn-Ce/TiO 2  catalyst  for  selective  catalytic  reduction  of   [24]  Arena  F,  Dario  R,  Parmaliana  A.  A  characterization  study  of  the
                 NO x with NH 3[J]. Catalysis Today, 2019, 328: 300-306.   surface  acidity  of  solid  catalysts  by  temperature  programmed
            [12]  Geim  A  K,  Novoselov  K  S.  The  rise  of  graphene[J].  Nature   methods[J]. Applied Catalysis A:General, 1998, 170(1): 127-137.
                 Materials, 2007, 6(3): 183-191.               [25]  Zhuo  G  L,  Jiang  X  Z.  An  attractive  synthetic  approach  to  methyl
            [13]  Xue Bing (薛冰), Liu Xiangmei (刘香梅), Liu Na (柳娜), et al. High   formate from methanol via methyl nitrite[J]. Catalysis Letters, 2002,
                 efficient aqueous ammonia modified graphene oxide for knoevenagel   80(3): 171-174.
                 condensation[J].  Fine  Chemicals  (精细化工),  2018,  35(9):  1529-   [26]  Chen  T,  Han  H  J,  Yao  J,  et al.  The  transesterification  of  dimethyl
                 1534, 1541.                                       carbonate  and  phenol  catalyzed  by  12-molybdophosphoric  salts[J].
            [14]  Zhu M S, Chen P L, Liu M H. High-performance visible-light-driven   Catalysis Communications, 2007, 8(9): 1361-1365.
                 plasmonic  photocatalysts  Ag/AgCl  with  controlled  size  and  shape   [27]  Blanco-Bonilla F, Lopez-Pedrajas S, Luna D, et al. Vanadium oxides
                 using  graphene  oxide  as  capping  agent  and  catalyst  promoter[J].   supported  on  amorphous  aluminum  phosphate:  Structural  and
                 Langmuir, 2013, 29(29): 9259-9268.                chemical  characterization  and  catalytic  performance  in  the  2-propanol
            [15]  Wei S, Zhang R, Liu Y, et al. Graphene quantum dots prepared from   reaction[J]. Journal of Molecular Catalysis A: Chemical, 2016, 416:
                 chemical  exfoliation  of  multiwall  carbon  nanotubes:An  efficient   105-116.
   106   107   108   109   110   111   112   113   114   115   116