Page 125 - 《精细化工》2020年第1期
P. 125

第 1 期                     杜宏涛,等:  脱氧鸭嘴花酮碱类似物抗胆碱酯酶构效关系                                    ·111·


            [3]   Prati F, Bottegoni G, Bolognesi M, et al. BACE-1 inhibitors: From   2015, 71: 71-76.
                 recent  single-target  molecules  to  multitarget  compounds  for   [18]  Zabeer  A,  Bhagat  A,  Gupta  O, et al.  Synthesis  and  bronchodilator
                 Alzheimer's disease[J]. J Med Chem, 2018, 61(3): 619-637.     activity  of  new  quinazolin  derivative[J].  Cheminform,  2006,  41(3):
            [4]   Prince M, Adelina C, Knapp M, et al. The global voice on dementia,   429-434.
                 Alzheimer's  disease  international,  world  alzheimer  report[M].   [19]  Dhuley  J.  Antitussive  effect  of  Adhatoda  vasica  extract  on
                 London: Alzheimer’s Disease International, 2016.     mechanical or chemical stimulation-induced coughing in animals[J].
            [5]   Buckley  J,  Salpeter  S.  A  risk-benefit  assessment  of  dementia   J Ethnopharmacol, 1999, 67(3): 361-365.
                 medications: Systematic review of the evidence[J]. Drugs & Aging,   [20]  Zabeer  A,  Bhagat  A,  Gupta  O, et al.  Synthesis  and  bronchodilator
                 2015, 32(6): 453-467.                             activity  of  new  quinazolin  derivative[J].  Eur  J  Med  Chem,  2006,
            [6]   da  Silva  C,  Pott  A,  Elifio-Esposito  S,  et al.  Effect  of  donepezil,   41(3): 429-434.
                 tacrine,  galantamine  and  rivastigmine  on  acetylcholinesterase   [21]  Decker  M,  Krauth  F,  Lehmann  J.  Novel  tricyclic  quinazolinimines
                 inhibition in dugesia tigrina[J]. Molecules, 2016, 21(1): 1-11.    and  related  tetracyclic  nitrogen  bridgehead  compounds  as
            [7]   Young A. Four decades of neurodegenerative disease research: How   cholinesterase inhibitors with selectivity towards butyrylcholinesterase[J].
                 far we have come![J]. J Neurosci, 2009, 29(41): 12722.     Bioorg Med Chem, 2006, 14(6): 1966-1977.
            [8]   Anand  P,  Singh  B.  A  review  on  cholinesterase  inhibitors  for   [22]  Yan J,  Li Y,  Ye  W,  et al.  Design,  synthesis  and  evaluation  of
                 Alzheimer’s disease[J]. Arch Pharm Res, 2013, 36(4): 375-399.     isaindigotone  derivatives  as  dual  inhibitors  for  acetylcholinesterase
            [9]   Spilovska K, Korabecny J, Sepsova V, et al. Novel tacrine-scutellarin   and  amyloid  beta  aggregation[J].  Bioorg  Med  Chem,  2012,  20(8):
                 hybrids as multipotent anti-Alzheimer's agents: Design, synthesis and   2527-2534.
                 biological evaluation[J]. Molecules, 2017, 22(6): 1-22.     [23]  Li Q, Yang H, Chen Y, et al. Recent progress in the identification of
            [10]  Li G, Hong G, Li X, et al. Synthesis and activity towards Alzheimer's   selective butyrylcholinesterase inhibitors for Alzheimer's disease[J].
                 disease  in  vitro:  Tacrine,  phenolic  acid  and  ligustrazine  hybrids[J].   Eur J Med Chem, 2017, 132: 294-309.
                 Eur J Med Chem, 2018, 148: 238-254.           [24]  Darras F, Pockes S, Huang G, et al. Synthesis, biological evaluation,
            [11]  Hiremathad  A,  Keri  R,  Esteves  A,  et al.  Novel  Tacrine-   and computational studies of tri- and tetracyclic nitrogen-bridgehead
                 Hydroxyphenylbenzimidazole  hybrids  as  potential  multitarget  drug   compounds as potent dual-acting AChE inhibitors and hH(3) receptor
                 candidates for Alzheimer's disease[J]. Eur J Med Chem, 2018, 148:   antagonists[J]. ACS Chem Neurosci, 2014, 5(3): 225-242.
                 255-267.                                      [25]  Darras  F,  Wehle  S,  Huang  G,  et al.  Amine  substitution  of
            [12]  Galdeano  C,  Coquelle  N,  Cieslikiewicz-Bouet  M,  et al.  Increasing   quinazolinones  leads  to  selective  nanomolar  AChE  inhibitors  with
                 polarity in tacrine and huprine derivatives: Potent anticholinesterase   ‘inverted’  binding  mode[J].  Bioorg  Med  Chem,  2014,  22(17):
                 agents  for  the  treatment  of  myasthenia  gravis[J].  Molecules,  2018,   4867-4881.
                 23(3): 1-11.                                  [26]  Ma  F,  Du  H.  Novel  deoxyvasicinone  derivatives  as  potent
            [13]  Rampa  A,  Bartolini  M,  Pruccoli  L,  et al.  Exploiting  the  chalcone   multitarget-directed ligands for the treatment of Alzheimer's disease:
                 scaffold to develop multifunctional agents for Alzheimer's disease[J].   Design,  synthesis,  and  biological  evaluation[J].  Eur  J  Med  Chem,
                 Molecules, 2018, 23(8): 1-22.                     2017, 140: 118-127.
            [14]  Kaufmann  D,  Dogra  A,  Tahrani  A,  et al.  Extracts  from  traditional   [27]  Du H, Liu X, Xie J, et al. Novel deoxyvasicinone-donepezil hybrids
                 Chinese  medicinal  plants  inhibit  acetylcholinesterase,  a  known   as  potential  multitarget  drug  candidates  for  Alzheimer’s  disease[J].
                 Alzheimer's disease target[J]. Molecules, 2016, 21(9): 1-16.     ACS Chem Neurosci, 2019, 10: 2397-2407.
            [15]  Sharma  G,  Laxman  S,  Murthy  Y,  et al.  Synthesis  of  novel   [28]  Ellman  G,  Courtney  K,  Jr  A,  et al.  A  new  and  rapid  colorimetric
                 deoxyvasicinone analogs and their anti-bacterial studies[J]. IJAPBC,   determination   of   acetylcholinesterase   activity[J].   Biochem
                 2014, 1(3): 328-333.                              Pharmacol, 1961, 7(2): 88-95.
            [16]  Shakhidoyatov  K,  Elmuradov  B.  Tricyclic  quinazoline  alkaloids:   [29]  Chen  Z,  Digiacomo  M,  Tu  Y,  et al.  Discovery  of  novel
                 Isolation, synthesis, chemical modification, and biological activity[J].   rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents
                 Chem Nat Compd, 2014, 50: 781-800.                for Alzheimer's disease[J]. Eur J Med Chem, 2017, 125: 784-792.
            [17]  Zhong  H,  Leung  K,  Lin  S,  et al.  Discovery  of  deoxyvasicinone   [30]  DeLano W L. The PyMOL molecular graphics system [CP]. DeLano
                 derivatives as inhibitors of NEDD8-activating enzyme[J]. Methods,   Scientific LLC, Palo Alto, 2002. http://www.pymol.org.
   120   121   122   123   124   125   126   127   128   129   130