Page 125 - 《精细化工》2020年第1期
P. 125
第 1 期 杜宏涛,等: 脱氧鸭嘴花酮碱类似物抗胆碱酯酶构效关系 ·111·
[3] Prati F, Bottegoni G, Bolognesi M, et al. BACE-1 inhibitors: From 2015, 71: 71-76.
recent single-target molecules to multitarget compounds for [18] Zabeer A, Bhagat A, Gupta O, et al. Synthesis and bronchodilator
Alzheimer's disease[J]. J Med Chem, 2018, 61(3): 619-637. activity of new quinazolin derivative[J]. Cheminform, 2006, 41(3):
[4] Prince M, Adelina C, Knapp M, et al. The global voice on dementia, 429-434.
Alzheimer's disease international, world alzheimer report[M]. [19] Dhuley J. Antitussive effect of Adhatoda vasica extract on
London: Alzheimer’s Disease International, 2016. mechanical or chemical stimulation-induced coughing in animals[J].
[5] Buckley J, Salpeter S. A risk-benefit assessment of dementia J Ethnopharmacol, 1999, 67(3): 361-365.
medications: Systematic review of the evidence[J]. Drugs & Aging, [20] Zabeer A, Bhagat A, Gupta O, et al. Synthesis and bronchodilator
2015, 32(6): 453-467. activity of new quinazolin derivative[J]. Eur J Med Chem, 2006,
[6] da Silva C, Pott A, Elifio-Esposito S, et al. Effect of donepezil, 41(3): 429-434.
tacrine, galantamine and rivastigmine on acetylcholinesterase [21] Decker M, Krauth F, Lehmann J. Novel tricyclic quinazolinimines
inhibition in dugesia tigrina[J]. Molecules, 2016, 21(1): 1-11. and related tetracyclic nitrogen bridgehead compounds as
[7] Young A. Four decades of neurodegenerative disease research: How cholinesterase inhibitors with selectivity towards butyrylcholinesterase[J].
far we have come![J]. J Neurosci, 2009, 29(41): 12722. Bioorg Med Chem, 2006, 14(6): 1966-1977.
[8] Anand P, Singh B. A review on cholinesterase inhibitors for [22] Yan J, Li Y, Ye W, et al. Design, synthesis and evaluation of
Alzheimer’s disease[J]. Arch Pharm Res, 2013, 36(4): 375-399. isaindigotone derivatives as dual inhibitors for acetylcholinesterase
[9] Spilovska K, Korabecny J, Sepsova V, et al. Novel tacrine-scutellarin and amyloid beta aggregation[J]. Bioorg Med Chem, 2012, 20(8):
hybrids as multipotent anti-Alzheimer's agents: Design, synthesis and 2527-2534.
biological evaluation[J]. Molecules, 2017, 22(6): 1-22. [23] Li Q, Yang H, Chen Y, et al. Recent progress in the identification of
[10] Li G, Hong G, Li X, et al. Synthesis and activity towards Alzheimer's selective butyrylcholinesterase inhibitors for Alzheimer's disease[J].
disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids[J]. Eur J Med Chem, 2017, 132: 294-309.
Eur J Med Chem, 2018, 148: 238-254. [24] Darras F, Pockes S, Huang G, et al. Synthesis, biological evaluation,
[11] Hiremathad A, Keri R, Esteves A, et al. Novel Tacrine- and computational studies of tri- and tetracyclic nitrogen-bridgehead
Hydroxyphenylbenzimidazole hybrids as potential multitarget drug compounds as potent dual-acting AChE inhibitors and hH(3) receptor
candidates for Alzheimer's disease[J]. Eur J Med Chem, 2018, 148: antagonists[J]. ACS Chem Neurosci, 2014, 5(3): 225-242.
255-267. [25] Darras F, Wehle S, Huang G, et al. Amine substitution of
[12] Galdeano C, Coquelle N, Cieslikiewicz-Bouet M, et al. Increasing quinazolinones leads to selective nanomolar AChE inhibitors with
polarity in tacrine and huprine derivatives: Potent anticholinesterase ‘inverted’ binding mode[J]. Bioorg Med Chem, 2014, 22(17):
agents for the treatment of myasthenia gravis[J]. Molecules, 2018, 4867-4881.
23(3): 1-11. [26] Ma F, Du H. Novel deoxyvasicinone derivatives as potent
[13] Rampa A, Bartolini M, Pruccoli L, et al. Exploiting the chalcone multitarget-directed ligands for the treatment of Alzheimer's disease:
scaffold to develop multifunctional agents for Alzheimer's disease[J]. Design, synthesis, and biological evaluation[J]. Eur J Med Chem,
Molecules, 2018, 23(8): 1-22. 2017, 140: 118-127.
[14] Kaufmann D, Dogra A, Tahrani A, et al. Extracts from traditional [27] Du H, Liu X, Xie J, et al. Novel deoxyvasicinone-donepezil hybrids
Chinese medicinal plants inhibit acetylcholinesterase, a known as potential multitarget drug candidates for Alzheimer’s disease[J].
Alzheimer's disease target[J]. Molecules, 2016, 21(9): 1-16. ACS Chem Neurosci, 2019, 10: 2397-2407.
[15] Sharma G, Laxman S, Murthy Y, et al. Synthesis of novel [28] Ellman G, Courtney K, Jr A, et al. A new and rapid colorimetric
deoxyvasicinone analogs and their anti-bacterial studies[J]. IJAPBC, determination of acetylcholinesterase activity[J]. Biochem
2014, 1(3): 328-333. Pharmacol, 1961, 7(2): 88-95.
[16] Shakhidoyatov K, Elmuradov B. Tricyclic quinazoline alkaloids: [29] Chen Z, Digiacomo M, Tu Y, et al. Discovery of novel
Isolation, synthesis, chemical modification, and biological activity[J]. rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents
Chem Nat Compd, 2014, 50: 781-800. for Alzheimer's disease[J]. Eur J Med Chem, 2017, 125: 784-792.
[17] Zhong H, Leung K, Lin S, et al. Discovery of deoxyvasicinone [30] DeLano W L. The PyMOL molecular graphics system [CP]. DeLano
derivatives as inhibitors of NEDD8-activating enzyme[J]. Methods, Scientific LLC, Palo Alto, 2002. http://www.pymol.org.