Page 93 - 《精细化工》2020年第1期
P. 93
第 1 期 陈 静,等: CNTs/有机氟改性聚氨酯-丙烯酸酯的制备与性能 ·79·
Eʹ最大,T g 为 79 ℃,说明两者引入显著改善了胶 using FT-IR and photo-DSC methods[J]. Progress in Organic Coatings,
2018, 122: 10-18.
膜的热性能;其胶膜的吸水率为 4.1%,水接触角为
[7] Yang Chen (杨晨), Li Xiaorui (李小瑞), Li Peizhi (李培枝), et al.
110.8°,拉伸强度为 26.3 MPa,断裂伸长率为 352%, Preparation of fluorinated waterborne polyurethane-acrylate coatings
综合性能较佳。 and its film strength and water resistance[J]. Paint & Coatings
industry (涂料工业), 2013, 43(8): 55-59.
因此,采用条件温和、简便易行、绿色环保的 [8] Mu C, Zhang L, Song Y, et al. Modification of carbon nanotubes by a
方法修饰碳纳米管,既能保持 CNTs 结构完整,又 novel biomimetic approach towards the enhancement of the mechanical
properties of polyurethane[J]. Polymer, 2016, 92: 231-238.
能够避免采用强酸氧化 CNTs 产生的废酸废水,一
[9] Bao F, Shi W. Synthesis and properties of hyperbranched
定程度上降低了成本,极大地提高了材料的力学性 polyurethane acrylate used for UV curing coatings[J]. Progress in
能、热性能。但探索效率更高、包裹效果更完美的 Organic Coatings, 2010, 68(4): 334-339.
[10] Run Yanling (闰彦玲), Yang Jianjun (杨建军) , Wu Qingyun (吴庆
修饰方法,对浓度、反应时间、改性剂等因素有待 云 ), et al. Preparation of poly (ethylenediamined graphene
进一步探讨。 oxide/acrylate)-waterborne hyperbranched polyurethane hybrid
latexes[J]. Polymer Materials Science & Engineering (高分子材料科
参考文献: 学与工程), 2017, 33(9): 112-119.
[11] Moghim M H, Zebarjad S M. Tensile properties and deformation
[1] Yang X, He Y, Zeng G, et al. Bio-inspired method for preparation of mechanisms of PU/MWCNTs nanocomposites[J]. Polymer Bulletin,
multiwall carbon nanotubes decorated superhydrophilic poly 2017, 74(10): 4267-4277.
(vinylidene fluoride) membrane for oil/water emulsion separation[J]. [12] Lei W, Sun Y, Huang B, et al. Synthesis and application of
Chemical Engineering Journal, 2017, 321: 245-256. polyurethane-modified silicone as finishing agent for cotton fabric[J].
[2] Zhou Junjiao (周俊娇), Hong Xinqiu (洪新球). Study on the Fibers & Polymers, 2018, 19(5): 1024-1031.
properties of polyurethane coating materials modified by carbon [13] Wang Guan (王冠), Zhang Deyuan (张德远), Chen Huawei (陈华
nanotubes[J]. West Leather (西部皮革), 2016, 38(15): 57-59. 伟 ). Perparation and analysis of superhydrophobic SiO 2-PTFE
[3] Hu H, Yu B, Ye Q, et al. Modification of carbon nanotubes with a composite coating[J]. Journal of Functional Materials (功能材料),
nanothin polydopamine layer and polydimethylamino-ethyl methacrylate 2014, 22(45): 22013-22016.
brushes[J]. Carbon, 2010, 48(8): 2347-2353. [14] Zhang Bing(张兵), Shi Yangyang (石阳阳), Xu Gewen (许戈文), et
[4] Fan X, Zhang Z, Yue S, et al. Fabrication, characterization and al. Synthesis and characterization of modified multi-walled carbon
properties of waterborne polyurethane/3-aminopropyltriethoxysilane/ nanotubes/polyurethane emulsion[J]. Guangzhou Chemical Industry
multiwalled carbon nanotube nanocomposites via copolycondensation (广州化工), 2014, 42(20): 85-88.
of hydroxyls[J]. Polymer Bulletin, 2017, 74(7): 2719-2739. [15] Mishra A K, Chattopadhyay D K, Sreedhar B, et al. Thermal and
[5] Hou Mingyue (侯明月), Li Ang (李昂), Zou Wei (邹威), et al. Effect dynamic mechanical characterization of polyurethane–urea–imide
of amino-modified carbon nanotubes on the pore structure of coatings[J]. Journal of Applied Polymer Science, 2010, 102(4):
polyurethane foams[J]. Polymer Materials Science & Engineering 3158-3167.
(高分子材料科学与工程), 2016, 32(1): 179-183. [16] Wang X, Hu J J, Li Y. A novel approach on preparation and
[6] Xu J, Yan J, Tao Z, et al. Synthesis of UV-curing waterborne characterization of thermosetting fluorinated polyurethane
polyurethane-acrylate coating and its photopolymerization kinetics coatings[J]. Materials Science Forum, 2016, 3960(852): 1025-1028.
(上接第 50 页) [20] Liu Ye (刘桦), Luo Binghong (罗丙红), Chen Ruihong (陈睿鹏), et
al. Preparation and characterization of nano-cellulose whiskers
[13] Spinella S, Re G L, Liu B, et al. Polylactide/cellulose nanocrystal reinforced and toughened poly(L-lactic acid) based composites[J].
nanocomposites: Efficient routes for nanofiber modification and Acta Materiae Compositae Sinica (复合材料学报), 2015, 32(6):
effects of nanofiber chemistry on PLA reinforcement[J]. Polymer, 1703-1713.
2015, 65: 9-17. [21] Fortunati E, Peltzer M, Armentano I, et al. Effects of modified
[14] Abraham E, Nevo Y, Slattegard R, et al. Highly hydrophobic cellulose nanocrystals on the barrier and migration properties of PLA
thermally stable liquid crystalline cellulosic nanomaterials[J]. ACS nano-biocomposites[J]. Carbohydrate Polymers, 2012, 90(2): 948-956.
Sustainable Chemistry & Engineering, 2016, 4(3): 1338-1346. [22] Zhou Aijing (周爱静). Preparation and characterization of nanocellulose
[15] Xu A, Zhang Y, Zhang Y. Insight into dissolution mechanism of and its films from non-woods [D]. Guangzhou: South China University
cellulose in [C4mim][CH 3COO]/DMSO solvent by 13 CNMR of Technology (华南理工大学), 2016.
spectra[J]. Journal of Molecular Structure, 2015, 1088: 101-104. [23] Kamal M R, Khoshkava V. Effect of cellulose nanocrystals (CNC) on
[16] Miao C W, Hamad W Y. In-situ polymerized cellulose nanocrystals rheological and mechanical properties and crystallization behavior of
(CNC)-poly(l-lactide)(PLLA) nanomaterials and applications in PLA/CNC nanocomposites[J]. Carbohydrate Polymers, 2015, 123(5):
nanocomposite processing[J]. Carbohydrate Polymers, 2016, 153(20): 105-114.
549-558. [24] Shi Q, Zhou C, Yue Y, et al. Mechanical properties and in vitro
[17] Tan X Y, Hamid S B A, Lai C W. Preparation of high crystallinity degradation of electrospun bio-nanocomposite mats from PLA and
cellulose nanocrystals (CNCs) by ionic liquid solvolysis[J]. Biomass cellulose nanocrystals[J]. Carbohydrate Polymers, 2012, 90(1): 301-
& Bioenergy, 2015, 81: 584-591. 308.
[18] Boujemaoui A, Mongkhontreerat S, Eva Malmström, et al. Preparation [25] Chi K, Catchmark J M. Enhanced dispersion and interface
and characterization of functionalized cellulose nanocrystals[J]. compatibilization of crystalline nanocellulose in polylactide by
Carbohydrate Polymers, 2015, 115(1): 457-464. surfactant adsorption[J]. Cellulose, 2017, 24(13): 4845-4860.
[19] Herrera Vargas N. Plasticized polylactic acid/cellulose nanocomposites [26] Zhu H, Fang Z, Preston C, et al. Transparent paper: Fabrications,
prepared using melt-extrusi[J]. Composites Science & Technology, properties, and device applications[J]. Energy & Environmental
2014, 106: 149-155. Science, 2014, 7(1): 269-287.