Page 93 - 《精细化工》2020年第1期
P. 93

第 1 期                   陈   静,等: CNTs/有机氟改性聚氨酯-丙烯酸酯的制备与性能                                 ·79·

            Eʹ最大,T g 为 79  ℃,说明两者引入显著改善了胶                          using FT-IR and photo-DSC methods[J]. Progress in Organic Coatings,
                                                                   2018, 122: 10-18.
            膜的热性能;其胶膜的吸水率为 4.1%,水接触角为
                                                               [7]   Yang Chen (杨晨), Li Xiaorui (李小瑞), Li Peizhi (李培枝), et al.
            110.8°,拉伸强度为 26.3 MPa,断裂伸长率为 352%,                     Preparation of fluorinated waterborne polyurethane-acrylate coatings
            综合性能较佳。                                                and  its  film  strength  and  water  resistance[J].  Paint  &  Coatings
                                                                   industry (涂料工业), 2013, 43(8): 55-59.
                 因此,采用条件温和、简便易行、绿色环保的                          [8]   Mu C, Zhang L, Song Y, et al. Modification of carbon nanotubes by a
            方法修饰碳纳米管,既能保持 CNTs 结构完整,又                              novel biomimetic approach towards the enhancement of the mechanical
                                                                   properties of polyurethane[J]. Polymer, 2016, 92: 231-238.
            能够避免采用强酸氧化 CNTs 产生的废酸废水,一
                                                               [9]   Bao  F,  Shi  W.  Synthesis  and  properties  of  hyperbranched
            定程度上降低了成本,极大地提高了材料的力学性                                 polyurethane  acrylate  used  for  UV  curing  coatings[J].  Progress  in
            能、热性能。但探索效率更高、包裹效果更完美的                                 Organic Coatings, 2010, 68(4): 334-339.
                                                               [10]  Run Yanling (闰彦玲), Yang Jianjun (杨建军) , Wu Qingyun (吴庆
            修饰方法,对浓度、反应时间、改性剂等因素有待                                 云 ),  et al.  Preparation  of  poly  (ethylenediamined  graphene
            进一步探讨。                                                 oxide/acrylate)-waterborne  hyperbranched  polyurethane  hybrid
                                                                   latexes[J]. Polymer Materials Science & Engineering (高分子材料科
            参考文献:                                                  学与工程), 2017, 33(9): 112-119.
                                                               [11]  Moghim  M  H,  Zebarjad  S  M.  Tensile  properties  and  deformation
            [1]   Yang X, He Y, Zeng G, et al. Bio-inspired method for preparation of   mechanisms of PU/MWCNTs nanocomposites[J]. Polymer Bulletin,
                 multiwall  carbon  nanotubes  decorated  superhydrophilic  poly   2017, 74(10): 4267-4277.
                 (vinylidene fluoride) membrane for oil/water emulsion separation[J].   [12]  Lei  W,  Sun  Y,  Huang  B,  et al.  Synthesis  and  application  of
                 Chemical Engineering Journal, 2017, 321: 245-256.     polyurethane-modified silicone as finishing agent for cotton fabric[J].
            [2]   Zhou  Junjiao  (周俊娇),  Hong  Xinqiu  (洪新球).  Study  on  the   Fibers & Polymers, 2018, 19(5): 1024-1031.
                 properties  of  polyurethane  coating  materials  modified  by  carbon   [13]  Wang  Guan  (王冠),  Zhang  Deyuan  (张德远),  Chen  Huawei  (陈华
                 nanotubes[J]. West Leather (西部皮革), 2016, 38(15): 57-59.     伟 ).  Perparation  and  analysis  of  superhydrophobic  SiO 2-PTFE
            [3]   Hu H, Yu B, Ye Q, et al. Modification of carbon nanotubes with a   composite  coating[J].  Journal  of  Functional  Materials  (功能材料),
                 nanothin polydopamine layer and polydimethylamino-ethyl methacrylate   2014, 22(45): 22013-22016.
                 brushes[J]. Carbon, 2010, 48(8): 2347-2353.     [14]  Zhang Bing(张兵), Shi Yangyang (石阳阳), Xu Gewen (许戈文), et
            [4]   Fan  X,  Zhang  Z,  Yue  S,  et al.  Fabrication,  characterization  and   al.  Synthesis  and  characterization  of  modified  multi-walled  carbon
                 properties of waterborne polyurethane/3-aminopropyltriethoxysilane/   nanotubes/polyurethane  emulsion[J].  Guangzhou  Chemical  Industry
                 multiwalled carbon nanotube nanocomposites via copolycondensation   (广州化工), 2014, 42(20): 85-88.
                 of hydroxyls[J]. Polymer Bulletin, 2017, 74(7): 2719-2739.     [15]  Mishra  A  K,  Chattopadhyay  D  K,  Sreedhar  B,  et al.  Thermal  and
            [5]   Hou Mingyue (侯明月), Li Ang (李昂), Zou Wei (邹威), et al. Effect   dynamic  mechanical  characterization  of  polyurethane–urea–imide
                 of  amino-modified  carbon  nanotubes  on  the  pore  structure  of   coatings[J].  Journal  of  Applied  Polymer  Science,  2010,  102(4):
                 polyurethane  foams[J].  Polymer  Materials  Science  &  Engineering   3158-3167.
                 (高分子材料科学与工程), 2016, 32(1): 179-183.           [16]  Wang  X,  Hu  J  J,  Li  Y.  A  novel  approach  on  preparation  and
            [6]   Xu J,  Yan  J, Tao Z,  et al.  Synthesis  of  UV-curing  waterborne   characterization   of   thermosetting   fluorinated   polyurethane
                 polyurethane-acrylate coating and its photopolymerization kinetics     coatings[J]. Materials Science Forum, 2016, 3960(852): 1025-1028.



            (上接第 50 页)                                         [20]  Liu Ye (刘桦), Luo Binghong (罗丙红), Chen Ruihong (陈睿鹏), et
                                                                   al.  Preparation  and  characterization  of  nano-cellulose  whiskers
            [13]  Spinella  S,  Re  G  L,  Liu  B,  et al.  Polylactide/cellulose  nanocrystal   reinforced  and  toughened  poly(L-lactic  acid)  based  composites[J].
                 nanocomposites:  Efficient  routes  for  nanofiber  modification  and   Acta  Materiae  Compositae  Sinica  (复合材料学报),  2015,  32(6):
                 effects  of  nanofiber  chemistry  on  PLA  reinforcement[J].  Polymer,   1703-1713.
                 2015, 65: 9-17.                               [21]  Fortunati  E,  Peltzer  M,  Armentano  I,  et al.  Effects  of  modified
            [14]  Abraham  E,  Nevo  Y,  Slattegard  R,  et al.  Highly  hydrophobic   cellulose nanocrystals on the barrier and migration properties of PLA
                 thermally  stable  liquid  crystalline  cellulosic  nanomaterials[J].  ACS   nano-biocomposites[J]. Carbohydrate Polymers, 2012, 90(2): 948-956.
                 Sustainable Chemistry & Engineering, 2016, 4(3): 1338-1346.     [22]  Zhou Aijing (周爱静). Preparation and characterization of nanocellulose
            [15]  Xu  A,  Zhang  Y,  Zhang  Y.  Insight  into  dissolution  mechanism of   and its films from non-woods [D]. Guangzhou: South China University
                 cellulose  in  [C4mim][CH 3COO]/DMSO  solvent  by   13 CNMR   of Technology (华南理工大学), 2016.
                 spectra[J]. Journal of Molecular Structure, 2015, 1088: 101-104.     [23]  Kamal M R, Khoshkava V. Effect of cellulose nanocrystals (CNC) on
            [16]  Miao C W, Hamad W Y. In-situ polymerized cellulose nanocrystals   rheological and mechanical properties and crystallization behavior of
                 (CNC)-poly(l-lactide)(PLLA)  nanomaterials  and  applications  in   PLA/CNC nanocomposites[J]. Carbohydrate Polymers, 2015, 123(5):
                 nanocomposite processing[J]. Carbohydrate Polymers, 2016, 153(20):   105-114.
                 549-558.                                      [24]  Shi  Q,  Zhou  C,  Yue  Y,  et al.  Mechanical  properties  and  in  vitro
            [17]  Tan X Y, Hamid S B A, Lai C W. Preparation of high crystallinity   degradation  of  electrospun  bio-nanocomposite  mats  from  PLA  and
                 cellulose nanocrystals (CNCs) by ionic liquid solvolysis[J]. Biomass   cellulose nanocrystals[J]. Carbohydrate Polymers, 2012, 90(1): 301-
                 & Bioenergy, 2015, 81: 584-591.                   308.
            [18]  Boujemaoui A, Mongkhontreerat S, Eva Malmström, et al. Preparation   [25]  Chi  K,  Catchmark  J  M.  Enhanced  dispersion  and  interface
                 and  characterization  of  functionalized  cellulose  nanocrystals[J].   compatibilization  of  crystalline  nanocellulose  in  polylactide  by
                 Carbohydrate Polymers, 2015, 115(1): 457-464.     surfactant adsorption[J]. Cellulose, 2017, 24(13): 4845-4860.
            [19]  Herrera Vargas N. Plasticized polylactic acid/cellulose nanocomposites   [26]  Zhu  H,  Fang  Z,  Preston  C,  et al.  Transparent  paper:  Fabrications,
                 prepared  using  melt-extrusi[J].  Composites  Science  &  Technology,   properties,  and  device  applications[J].  Energy  &  Environmental
                 2014, 106: 149-155.                               Science, 2014, 7(1): 269-287.
   88   89   90   91   92   93   94   95   96   97   98