Page 94 - 《精细化工》2020年第1期
P. 94

第 37 卷第 1 期                             精   细   化   工                                  Vol.37, No.1
             202 0 年 1 月                             FINE CHEMICALS                                 Jan.    2020


              功能材料
                       原子灰 BPO-DMA-Co(Ⅱ)固化体系的探讨



                                             1
                                                                       2
                                                          2
                                                                                   1*
                                    刘   丽 ,刘方方 ,邢红立 ,刘欣伟
                 (1.  河北科技大学  化学与制药工程学院,河北  石家庄    050018;2.  河北科技大学  纺织服装学院,河北
                 石家庄    050018)
                 摘要:采用 BPO(过氧化苯甲酰)-DMA(二甲基苯胺)和 BPO-DMA-Co(Ⅱ)(异辛酸钴)两种固化体系,对原子灰进
                 行固化和等温差示扫描量热法(DSC)测试,并对其固化性能、固化程度、反应活化能进行了考察。结果表明,
                 BPO-DMA 体系中 Co(Ⅱ)的引入,不仅保持凝胶时间(t 1 )不变,而且可将表干时间(t 2 )缩短至 25 min,Δ(t 2 –t 1 )
                 缩短至 10 min,固化后有明显附着层;等温固化反应活化能(E a )由 55.13 kJ/mol 降低至 53.13 kJ/mol,加快了固
                 化速度,增大了反应热。通过非等温 DSC 考察原子灰 BPO-DMA-Co(Ⅱ)固化体系,采用 Kissinger 极值法、FWO
                                                                                7
                                                                                     –1
                 积分法、T-β 外推法,计算其固化参数为 E a =54.57  kJ/mol、指前因子 A=9.153×10  min ;当升温速率 β=0 时,
                 环境温度为 307.88  K,固化有较快的起始反应速度;323.50  K 时放热速度最大;371.15  K 时反应完成;根据
                 Friedman 方法判定该体系遵从自催化固化模型,并得到动力学方程 ln(da/dt)=lnβ(da/dT)=  –E a /(R·T)+nln(1–a)+
                 mlna+lnA,采用该方程对固化过程进行模拟,结果与实验数据很好地吻合。
                 关键词:过氧化苯甲酰;异辛酸钴;原子灰;表干;自催化固化模型;功能材料
                 中图分类号:TQ314.2      文献标识码:A      文章编号:1003-5214 (2020) 01-0080-08



                      Study on curing system of BPO-DMA-Co(Ⅱ) for poly-putty base


                                                         2
                                                                      2
                                           1
                                                                                  1*
                                      Liu Li , Liu Fangfang , Xing Hongli , Liu Xinwei
                 (1. College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang
                 050018, Hebei, China; 2. College of Textile and Garment, Hebei University of Science and Technology, Shijiazhuang
                 050018, Hebei, China)
                 Abstract: Two kinds of curing systems, BPO (benzoyl peroxide)-DMA (dimethylaniline) and BPO-DMA-
                 Co(Ⅱ) (cobalt isooctoate) for poly-putty base were tested by isothermal differential scanning calorimetry
                 (DSC). Their curing performance, curing degree, the reaction activation energy were explored. The results
                 showed that the introduction of Co(Ⅱ) in BPO-DMA system not only kept gel time t 1 unchanged, but also
                 made the surface drying time t 2 shorten to 25 min. Δ(t 2 –t 1) was 10 min, clear adhesion layer after curing;
                 The  activation  energy  of  isothermal  curing  reaction  decreased  from  55.13  kJ/mol  to  53.13  kJ/mol,
                 accelerating the curing speed and increasing the curing heat. The curing system of BPO-DMA-Co(Ⅱ) was
                 studied by non-isothermal DSC. The curing parameters of the curing system were calculated by Kissinger
                 extreme value method, FWO integral method and T-β extrapolation method. The reaction activation energy
                                                                    7
                                                                        –1
                 (E a) was 54.57 kJ/mol, pre-exponential factor A was 9.153×10  min . When the heating rate (β) was 0, the
                 ambient  temperature  was  307.88  K,  the  curing  had  a  faster  initial  reaction  rate.  When  the  system
                 temperature was 323.50 K, and the heat release rate was the highest. While the temperature reached 371.15
                 K, the reaction was completed. According to the calculation result of Friedman method, it was found that
                 the  system  complies  with  the  autocatalytic  curing  model,  and  the  kinetic  equation  was  ln(da/dt)=lnβ
                 (da/dT)= –E a/(R·T)+nln(1–a)+mlna+lnA. This equation was used to simulate the curing process, and the
                 results showed that the data was in good agreement with the experimental measurements.


                 收稿日期:2019-04-10;  定用日期:2019-07-16; DOI: 10.13550/j.jxhg.20190297
                 基金项目:河北省教育厅 2018 重点项目(ZD2018235);2019 河北科技大学研究生创新资助项目
                 作者简介:刘   丽(1992—),女,硕士生,电话:15732150727,E-mail:2224861231@qq.com。联系人:刘欣伟(1987—),男,博
                 士,讲师,电话:15001276757,E-mail:liu_sjz@126.com。
   89   90   91   92   93   94   95   96   97   98   99