Page 55 - 《精细化工》2020年 第10期
P. 55
第 10 期 崔维怡,等: 甲醛催化氧化反应机理的研究进展 ·1985·
[27] ZHANG C B, LIU F D, ZHAI Y P, et al. Alkali-metal-promoted nanospheres for catalytic oxidation of formaldehyde[J]. Chemical
Pt/TiO 2 opens a more efficient pathway to formaldehyde oxidation at Engineering Journal, 2018, 350: 419-428.
+
ambient temperatures[J]. Angewandte Chemie-International Edition, [47] BAI B Y, LI J H. Positive effects of K ions on three-dimensional
2012, 51: 9628-9632. mesoporous Ag/Co 3O 4 catalyst for HCHO oxidation[J]. ACS Catalysis,
[28] NIE L H, ZHENG Y Q, YU J G. Efficient decomposition of 2014, 4: 2753-2762.
formaldehyde at room temperature over Pt/honeycomb ceramics with [48] CHEN X Y, CHEN M, HE G Z, et al. Specific role of potassium in
ultra-low Pt content[J]. Dalton Transactions, 2014, 43: 12935-12942. promoting Ag/Al 2O 3 for catalytic oxidation of formaldehyde at low
[29] SONG S Q, WU X, LU C H, et al. Solid strong base K-Pt/NaY zeolite temperature[J]. Journal of Physical Chemistry C, 2018, 122, 27331-
nano-catalytic system for completed elimination of formaldehyde at 27339.
room temperature[J]. Applied Surface Science, 2018, 442: 195-203. [49] PARK S J, BAE I, NAM I S, et al. Oxidation of formaldehyde over
[30] YAN Z X, XU Z H, YU J G, et al. Highly active mesoporous Pd/Beta catalyst[J]. Chemical Engineering Journal, 2012, 195/196:
ferrihydrite supported Pt catalyst for formaldehyde removal at room 392-402.
Temperature[J]. Environmental Science & Technology, 2015, 49: [50] LI Y B, ZHANG C B, MA J Z, et al. High temperature reduction
6637-6644. dramatically promotes Pd/TiO 2 catalyst for ambient formaldehyde
[31] HUO Y, WANG X Y, RUI Z B, et al. Identification of the nearby oxidation[J]. Applied Catalysis B: Environmental, 2017, 217:
hydroxyls role in promoting HCHO oxidation over a Pt catalyst[J]. 560-569.
Industrial & Engineering Chemistry Research, 2018, 57(24): 8183- [51] HUANG H B, YE X G, HUANG H L, et al. Mechanistic study on
8189. formaldehyde removal over Pd/TiO 2 catalysts: Oxygen transfer and
[32] WANG Y Y, JIANG C J, LE Y, et al. Hierarchical honeycomb-like role of water vapor[J]. Chemical Engineering Journal, 2013, 230:
Pt/NiFe-LDH/rGO nanocomposite with excellent formaldehyde 73-79.
decomposition activity[J]. Chemical Engineering Journal, 2019, 365: [52] FAN Z Y, FANG W J, ZHANG Z X, et al. Highly active rod-like
378-388. Co 3O 4 catalyst for the formaldehyde oxidation reaction[J]. Catalysis
[33] SUN D, LE Y, JIANG C J, et al. Ultrathin Bi 2WO 6 nanosheet Communications, 2018, 103: 10-14.
decorated with Pt nanoparticles for efficient formaldehyde removal at [53] FAN Z Y, ZHANG Z X, FANG W J, et al. Low-temperature catalytic
room temperature[J]. Applied Surface Science, 2018, 441: 429-437. oxidation of formaldehyde over Co 3O 4 catalysts prepared using
[34] WANG Q Y, ZHANG C L, SHI L, et al. Ultralow Pt catalyst for various precipitants[J]. Chinese Journal of Catalysis, 2016, 37:
formaldehyde removal: The determinant role of support[J]. Science, 947-954.
2018, 9: 487-501. [54] ZHANG J H, LI Y B, WANG L, et al. Catalytic oxidation of
[35] LIU F, SHEN J, XU D F, et al. Oxygen vacancies enhanced HCHO formaldehyde over manganese oxides with different crystal structures[J].
oxidation on a novel NaInO 2 supported Pt catalyst at room temperature[J]. Catalysis Science Technology, 2015, 5: 2305-2313.
Chemical Engineering Journal, 2018, 334: 2283-2292. [55] WANG J L, ZHANG G K, ZHANG P Y. Layered birnessite-type
[36] CHEN B B, SHI C, CROCKER M, et al. Catalytic removal of MnO 2 with surface pits for the enhanced formaldehyde catalytic
formaldehyde at room temperature over supported gold catalysts[J]. oxidation activity[J]. Journal of Materials Chemistry A, 2017, 5:
Applied Catalysis B: Environmental, 2013, 132/133: 245-255. 5719-5726.
[37] CHEN B B, ZHU X B, CROCKER M, et al. FeO x-supported gold [56] RONG S P, LI K Z, ZHANG P Y, et al. Potassium associated
catalysts for catalytic removal of formaldehyde at room temperature[J]. manganese vacancy in birnessite-type manganese dioxide for airborne
Applied Catalysis B: Environmental, 2014, 154/155: 73-81. formaldehyde oxidation[J]. Catalysis Science & Technology, 2018, 8:
[38] CHEN B B, ZHU X B, CROCKER M, et al. Complete oxidation of 1799-1809.
formaldehyde at ambient temperature over γ-Al 2O 3 supported Au [57] WANG J L, LI J, ZHANG P Y, et al. Understanding the “seesaw
+
catalyst[J]. Catalysis Communications, 2013, 42: 93-97. effect” of interlayered K with different structure in manganese oxides
[39] PANG G L, WANG D H, ZHANG Y H, et al. Catalytic activities and for the enhanced formaldehyde oxidation[J]. Applied Catalysis B:
mechanism of formaldehyde oxidation over gold supported on Environmental, 2018, 224: 863-870.
MnO 2 microsphere catalysts at room temperature[J]. Frontiers of [58] WANG J L, LI J G, JIANG C J, et al. The effect of manganese
Environmental Science & Engineering, 2016, 10: 447-457. vacancy in birnessite-type MnO 2 on room-temperature oxidation of
[40] LIU B C, LIU Y , LI C Y, et al. Three-dimensionally ordered formaldehyde in air[J]. Applied Catalysis B: Environmental, 2017,
macroporous Au/CeO 2-Co 3O 4 catalysts with nanoporous walls for 204(5): 147-155.
enhanced catalytic oxidation of formaldehyde[J]. Applied Catalysis [59] TANG X F, CHEN J L, HUANG X M, et al. Pt/MnO x-CeO 2 catalysts
B: Environmental, 2012, 127: 47-58. for the complete oxidation of formaldehyde at ambient temperature[J].
[41] QU J F, CHEN D Y, LI N J, et al. 3D gold-modified cerium and Applied Catalysis B: Environmental, 2008, 81: 115-121.
cobalt oxide catalyst on a graphene aerogel for highly efficient [60] WEN Y R, TANG X, LI J H, et al. Impact of synthesis method on
catalytic formaldehyde oxidation[J]. Small, 2019, 15(2): 1-8. catalytic performance of MnO x-SnO 2 for controlling formaldehyde
[42] LIU B C, LI C Y, ZHANG Y F, et al. Investigation of catalytic emission[J]. Catalysis Communications, 2009, 10(8): 1157-1160.
mechanism of formaldehyde oxidation over three-dimensionally [61] LU S H, LI K L, HUANG F L, et al. Efficient MnO x-Co 3O 4-CeO 2
ordered macroporous Au/CeO 2 catalyst[J]. Applied Catalysis B: catalysts for formaldehyde elimination[J]. Applied Surface Science,
Environmental, 2012, 111/112: 467-475. 2017, 400: 277-282.
[43] CHEN D, QU Z P, SUN Y H, et al. Identification of reaction [62] HUANG F L, CHEN C C, WANG F, et al. Effect of calcination
intermediates and mechanism responsible for highly active HCHO temperature on the catalytic oxidation of formaldehyde over Co 3O 4-
oxidation on Ag/MCM-41 catalysts[J]. Applied Catalysis B: CeO 2 catalysts[J]. Catalysis Surveys from Asia, 2017, 21: 143-149.
Environmental, 2013, 142/143: 838-848. [63] ZHANG C B (张长斌), HE H (贺泓) ,WANG L (王莲), et al. Review
[44] CHEN D, QU Z P, SHEN S J, et al. Comparative studies of silver of noble metal catalysts for the oxidation of formaldehyde and air
based catalysts supported on different supports for the oxidation of purification in indoor environment at room temperature[J]. Chinese
formaldehyde[J]. Catalysis Today, 2011, 175: 338-345. Science Bulletin (科学通报), 2009, 54(3): 278-286.
[45] QU Z P, CHEN D, SUN Y H, et al. High catalytic activity for [64] SIDHESWARAN M A, DESTAILLATS H, SULLIAN D P, et al.
formaldehyde oxidation of AgCo/APTES@MCM-41 prepared by two Quantitative room-temperature mineralization of airborne formaldehyde
steps method[J]. Applied Catalysis A: General, 2014, 487: 100-109. using manganese oxide catalysts[J]. Applied Catalysis B: Environmental,
[46] MA L, SEO C Y, CHEN X Y, et al. Sodium-promoted Ag/CeO 2 2011, 107(1/2): 34-41.