Page 55 - 《精细化工》2020年 第10期
P. 55

第 10 期                        崔维怡,等:  甲醛催化氧化反应机理的研究进展                                   ·1985·


            [27]  ZHANG  C  B,  LIU  F  D,  ZHAI  Y  P,  et al.  Alkali-metal-promoted   nanospheres  for  catalytic  oxidation  of  formaldehyde[J].  Chemical
                 Pt/TiO 2 opens a more efficient pathway to formaldehyde oxidation at   Engineering Journal, 2018, 350: 419-428.
                                                                                            +
                 ambient temperatures[J]. Angewandte Chemie-International Edition,   [47]  BAI B Y, LI J H. Positive effects of K  ions on three-dimensional
                 2012, 51: 9628-9632.                              mesoporous Ag/Co 3O 4 catalyst for HCHO oxidation[J]. ACS Catalysis,
            [28]  NIE  L  H,  ZHENG  Y  Q,  YU  J  G.  Efficient  decomposition  of   2014, 4: 2753-2762.
                 formaldehyde at room temperature over Pt/honeycomb ceramics with   [48]  CHEN X Y, CHEN M, HE G Z, et al. Specific role of potassium in
                 ultra-low Pt content[J]. Dalton Transactions, 2014, 43: 12935-12942.   promoting Ag/Al 2O 3 for catalytic oxidation of formaldehyde at low
            [29]  SONG S Q, WU X, LU C H, et al. Solid strong base K-Pt/NaY zeolite   temperature[J]. Journal of Physical Chemistry C, 2018, 122, 27331-
                 nano-catalytic system for completed elimination of formaldehyde at   27339.
                 room temperature[J]. Applied Surface Science, 2018, 442: 195-203.   [49]  PARK S J, BAE I, NAM I S, et al. Oxidation of formaldehyde over
            [30]  YAN  Z  X,  XU  Z  H,  YU  J  G,  et al.  Highly  active  mesoporous   Pd/Beta  catalyst[J].  Chemical  Engineering  Journal,  2012,  195/196:
                 ferrihydrite supported Pt catalyst for formaldehyde removal at room   392-402.
                 Temperature[J].  Environmental  Science  &  Technology,  2015,  49:   [50]  LI Y  B,  ZHANG  C  B,  MA  J  Z,  et al.  High temperature  reduction
                 6637-6644.                                        dramatically  promotes  Pd/TiO 2  catalyst  for  ambient  formaldehyde
            [31]  HUO Y,  WANG  X Y,  RUI  Z  B,  et al.  Identification  of  the  nearby   oxidation[J].  Applied  Catalysis  B:  Environmental,  2017,  217:
                 hydroxyls role in promoting HCHO oxidation over a Pt catalyst[J].   560-569.
                 Industrial  &  Engineering  Chemistry  Research,  2018,  57(24):  8183-   [51]  HUANG H B, YE X G, HUANG H L, et al. Mechanistic study on
                 8189.                                             formaldehyde removal over Pd/TiO 2 catalysts: Oxygen transfer and
            [32]  WANG Y Y, JIANG C J, LE Y, et al. Hierarchical honeycomb-like   role  of  water  vapor[J].  Chemical  Engineering  Journal,  2013,  230:
                 Pt/NiFe-LDH/rGO  nanocomposite  with  excellent  formaldehyde   73-79.
                 decomposition activity[J]. Chemical Engineering Journal, 2019, 365:   [52]  FAN Z Y, FANG  W J, ZHANG Z X, et al. Highly active rod-like
                 378-388.                                          Co 3O 4 catalyst for the formaldehyde oxidation reaction[J]. Catalysis
            [33]  SUN  D,  LE  Y,  JIANG  C  J,  et al.  Ultrathin  Bi 2WO 6  nanosheet   Communications, 2018, 103: 10-14.
                 decorated with Pt nanoparticles for efficient formaldehyde removal at   [53]  FAN Z Y, ZHANG Z X, FANG W J, et al. Low-temperature catalytic
                 room temperature[J]. Applied Surface Science, 2018, 441: 429-437.   oxidation  of  formaldehyde  over  Co 3O 4  catalysts  prepared  using
            [34]  WANG  Q  Y,  ZHANG  C  L,  SHI  L,  et al.  Ultralow  Pt  catalyst  for   various  precipitants[J].  Chinese  Journal  of  Catalysis,  2016,  37:
                 formaldehyde removal: The determinant role of support[J]. Science,   947-954.
                 2018, 9: 487-501.                             [54]  ZHANG  J  H,  LI  Y  B,  WANG  L,  et al.  Catalytic  oxidation  of
            [35]  LIU F, SHEN J, XU D F, et al. Oxygen vacancies enhanced HCHO   formaldehyde over manganese oxides with different crystal structures[J].
                 oxidation on a novel NaInO 2 supported Pt catalyst at room temperature[J].   Catalysis Science Technology, 2015, 5: 2305-2313.
                 Chemical Engineering Journal, 2018, 334: 2283-2292.   [55]  WANG  J  L,  ZHANG  G  K,  ZHANG  P  Y.  Layered  birnessite-type
            [36]  CHEN  B  B,  SHI  C,  CROCKER  M,  et al.  Catalytic  removal  of   MnO 2 with surface pits for the enhanced formaldehyde  catalytic
                 formaldehyde at room temperature over supported gold catalysts[J].   oxidation  activity[J].  Journal  of  Materials  Chemistry  A,  2017,  5:
                 Applied Catalysis B: Environmental, 2013, 132/133: 245-255.   5719-5726.
            [37]  CHEN B B, ZHU X B, CROCKER M, et al. FeO x-supported gold   [56]  RONG S P,  LI K Z,  ZHANG  P  Y,  et al.  Potassium  associated
                 catalysts for catalytic removal of formaldehyde at room temperature[J].   manganese vacancy in birnessite-type manganese dioxide for airborne
                 Applied Catalysis B: Environmental, 2014, 154/155: 73-81.   formaldehyde oxidation[J]. Catalysis Science & Technology, 2018, 8:
            [38]  CHEN B B, ZHU X B, CROCKER M, et al. Complete oxidation of   1799-1809.
                 formaldehyde  at  ambient  temperature  over  γ-Al 2O 3  supported  Au   [57]  WANG  J  L,  LI  J,  ZHANG  P  Y,  et al.  Understanding  the  “seesaw
                                                                                 +
                 catalyst[J]. Catalysis Communications, 2013, 42: 93-97.   effect” of interlayered K  with different structure in manganese oxides
            [39]  PANG G L, WANG D H, ZHANG Y H, et al. Catalytic activities and   for  the  enhanced  formaldehyde  oxidation[J].  Applied  Catalysis  B:
                 mechanism  of  formaldehyde  oxidation  over  gold  supported  on     Environmental, 2018, 224: 863-870.
                 MnO 2  microsphere  catalysts  at  room  temperature[J].  Frontiers  of   [58]  WANG  J  L,  LI  J  G,  JIANG  C  J,  et al.  The  effect  of  manganese
                 Environmental Science & Engineering, 2016, 10: 447-457.   vacancy in birnessite-type MnO 2 on room-temperature oxidation of
            [40]  LIU  B  C,  LIU  Y  ,  LI  C  Y,  et al.  Three-dimensionally  ordered   formaldehyde  in  air[J].  Applied  Catalysis  B:  Environmental,  2017,
                 macroporous  Au/CeO 2-Co 3O 4  catalysts  with  nanoporous  walls  for   204(5): 147-155.
                 enhanced  catalytic  oxidation  of  formaldehyde[J].  Applied  Catalysis   [59]  TANG X F, CHEN J L, HUANG X M, et al. Pt/MnO x-CeO 2 catalysts
                 B: Environmental, 2012, 127: 47-58.               for the complete oxidation of formaldehyde at ambient temperature[J].
            [41]  QU  J  F,  CHEN  D  Y,  LI  N  J,  et al.  3D  gold-modified  cerium  and   Applied Catalysis B: Environmental, 2008, 81: 115-121.
                 cobalt  oxide  catalyst  on  a  graphene  aerogel  for  highly  efficient   [60]  WEN Y R, TANG X, LI J H, et al. Impact of synthesis method on
                 catalytic formaldehyde oxidation[J]. Small, 2019, 15(2): 1-8.   catalytic  performance  of  MnO x-SnO 2  for  controlling  formaldehyde
            [42]  LIU B C,  LI  C Y,  ZHANG  Y F,  et al.  Investigation  of  catalytic   emission[J]. Catalysis Communications, 2009, 10(8): 1157-1160.
                 mechanism  of  formaldehyde  oxidation  over  three-dimensionally   [61]  LU S H, LI K L, HUANG F L, et al. Efficient MnO x-Co 3O 4-CeO 2
                 ordered  macroporous  Au/CeO 2  catalyst[J].  Applied  Catalysis  B:   catalysts for formaldehyde elimination[J]. Applied Surface Science,
                 Environmental, 2012, 111/112: 467-475.            2017, 400: 277-282.
            [43]  CHEN  D,  QU  Z  P,  SUN  Y  H,  et al.  Identification  of  reaction   [62]  HUANG  F  L,  CHEN  C  C,  WANG  F,  et al.  Effect  of  calcination
                 intermediates  and  mechanism  responsible  for  highly  active  HCHO   temperature on the catalytic oxidation of formaldehyde over Co 3O 4-
                 oxidation  on  Ag/MCM-41  catalysts[J].  Applied  Catalysis  B:   CeO 2 catalysts[J]. Catalysis Surveys from Asia, 2017, 21: 143-149.
                 Environmental, 2013, 142/143: 838-848.        [63]  ZHANG C B (张长斌), HE H (贺泓) ,WANG L (王莲), et al. Review
            [44]  CHEN D, QU Z P, SHEN S J, et al. Comparative studies of silver   of  noble  metal  catalysts  for  the  oxidation  of  formaldehyde  and  air
                 based catalysts supported on different supports for the oxidation of   purification in indoor environment at room temperature[J]. Chinese
                 formaldehyde[J]. Catalysis Today, 2011, 175: 338-345.   Science Bulletin (科学通报), 2009, 54(3): 278-286.
            [45]  QU  Z  P,  CHEN  D,  SUN  Y  H,  et al.  High  catalytic  activity  for   [64]  SIDHESWARAN  M  A,  DESTAILLATS  H,  SULLIAN  D  P,  et al.
                 formaldehyde oxidation of AgCo/APTES@MCM-41 prepared by two   Quantitative room-temperature mineralization of airborne formaldehyde
                 steps method[J]. Applied Catalysis A: General, 2014, 487: 100-109.   using manganese oxide catalysts[J]. Applied Catalysis B: Environmental,
            [46]  MA  L, SEO C Y,  CHEN  X Y,  et al.  Sodium-promoted  Ag/CeO 2   2011, 107(1/2): 34-41.
   50   51   52   53   54   55   56   57   58   59   60