Page 148 - 《精细化工》2020年第3期
P. 148
·566· 精细化工 FINE CHEMICALS 第 37 卷
由图 3 可知,反应进行 1 h 时,化合物Ⅴ转化 红素合成工艺提供了一定的理论基础,也为合成其
率和化合物Ⅵ选择性分别为 69.1%和 63.5%,延长 他类胡萝卜素提供了一些新的思路。
反应时间,化合物Ⅴ转化率和产物Ⅵ选择性随之提
参考文献:
高,当反应时间为 3 h 时,化合物Ⅴ转化率和化合
[1] STAHL W, SIES H. Antioxidant activity of carotenoids[J].
物Ⅵ的选择性分别提高至 83.1%和 70.4%,之后随 Molecular Aspects of Medicine, 2003, 24(6): 345-351.
着时间的延长,化合物Ⅴ转化率趋于稳定,但化合 [2] BI S Y, LI L, GU H, et al. Lycopene upregulates ZO-1 and
downregulates claudin-1 through autophagy inhibition in the human
物Ⅵ选择性却略有降低,可能是由于在反应后期, cutaneous squamous cell carcinoma cell line COLO-16[J]. Journal of
Cancer, 2019, 10(2): 510-521.
会存在化合物Ⅵ和阿朴-12′-番茄红素醛的竞争反 [3] MARIANI S, LIONETTO L, CAVALLARI M, et al. Low prostate
应,随着时间的增加,这种竞争会增强,导致化合 concentration of lycopene is associated with development of prostate
cancer in patients with high-grade prostatic intraepithelial neoplasia[J].
物Ⅵ的选择性降低,所以,反应时间控制在 3 h 比 International Journal of Molecular Sciences, 2014, 15(1): 1433-1440.
较适宜。 [4] CARIS-VEYRAT C, GARCIA A L, REYNAUD E, et al. A review
about lycopene-induced nuclear hormone receptor signalling in
2.2.3 反应温度对合成化合物Ⅵ的影响 inflammation and lipid metabolism via still unknown endogenous
Apo-10'-Lycopenoids[J]. International Journal for Vitamin and
当 THF 与 DMSO 的混合溶液〔 V(THF)∶ Nutrition Research, 2016, 86(1/2): 62-70.
V(DMSO)=8∶1〕为溶剂,叔丁醇钾为碱性催化剂, [5] PETYAEV I M, DOVGALEVSKY P Y, KLOCHKOV V A, et al.
Effect of lycopene supplementation on cardiovascular parameters and
n(Ⅴ)∶n(Ⅳ)∶n(叔丁醇钾)=1∶2.2∶2.6,反应时间 markers of inflammation and oxidation in patients with coronary
为 3 h,分别测定反应温度为 20、30、40、50 ℃时化 vascular disease[J]. Food Science and Nutrition, 2018, 6(6): 1770-1777.
[6] COSTA-RODRIGUES J, PINHO O, MONTEIRO P R R. Can
合物Ⅴ的转化率和化合物Ⅵ的选择性,结果见表 3。 lycopene be considered an effective protection against cardiovascular
disease?[J]. Food Chemistry, 2018, 245: 1148-1153.
表 3 反应温度对化合物Ⅴ转化率和化合物Ⅵ选择性的 [7] STAHL W, HEINRICH U, AUST O, et al. Lycopene-rich products
and dietary photoprotection[J]. Photochemistry and Photobiology,
影响 2006, 5(2): 238-242.
Table 3 Effect of reaction temperature on the conversion [8] URBONAVIČIENĖ D, BOBINAITĖ R, TRUMBECKAITĖ S, et al.
Agro- industrial tomato by-products and extraction of functional food
of compound Ⅴ and the selectivity of compound Ⅵ ingredients[J]. Zemdirbyste-Agriculture, 2018, 105(1): 63-70.
反应温度/℃ [9] MARTINEZ-CAMARA S, RUBIO S, DEL RIO H, et al. Lycopene
production by mated fermentation of blakeslea trispora[J]. Methods
20 30 40 50 in Molecular Biology, 2018, 1852(15): 257-268.
[10] CHEN Yao (陈瑶). Research progress of lycopene production[J].
化合物Ⅴ转化率/% 81.5 83.1 83.8 84.9 Chemical Engineering Design Communications (化工设计通讯),
化合物Ⅵ选择性/% 67.5 70.4 64.2 57.4 2016, 42(12): 58, 62.
[11] MEYER K. Method for the manufacture of carotinoids and the novel
intermediates: US5166445A[P]. 1992-11-24.
如表 3 所示,当反应温度为 30 ℃时,化合物 [12] WEGNER C, JOHN M. Process for preparing phosphonium salts:
Ⅵ的选择性最高,为 70.4%。随着温度的升高,能 US6423873B1[P]. 2002-07-23.
[13] ZHANG Xibo (张希波), LIU Honghai (刘洪海), ZHANG Xiaoli (张
量增加从而更容易越过反应壁垒,加快反应速率, 晓丽 ), et al. Advanced in research for chemical synthesis of
化合物Ⅴ的转化率增高;而温度过高时,由于强碱 lycopene[J]. Northwest Pharmaceutical Journal (西北药学杂志),
2009, 24(1): 78-80.
和醛的存在,容易引起 Cannizzaro 歧化反应,生成 [14] ZHANG Zhaogui (张招贵). Fine organic synthesis and design[M].
Beijing: Chemical Industry Press (化学工业出版社), 2003: 526.
相应的醇类副产物和羧酸类副产物,导致化合物Ⅵ [15] BABLER J H, POSVIC H W. C-15 phosphonate reagent
选择性降低 [22] ,所以,反应温度选择为 30 ℃。 compositions for the manufacture of compounds such as lycopene
and methods of synthesizing the same: US5973179A[P]. 1999-10-26.
[16] SHEN R P, JIANG X Y, YE W D, et al. A novel and practical
3 结论 synthetic route for the total synthesis of lycopene[J]. Tetrahedron,
2011, 67(31): 5610-5614.
[17] MA Wenxin (马文鑫), LIANG Zhiping (梁智平), WANG Weijun
本文以假性紫罗兰酮一步合成 2,6,10-三甲基- (王渭军), et al. Total synthesis of lycopene[J]. Journal of China
3,5,9-十一烷三烯-1-醛,然后经过 Wittig-Horner 反 Pharmaceutical University (中国药 科大学 学报), 2013, 44(5):
390-393.
应获得 C15 膦酸酯,最终与 2,7-二甲基-2,4,6-辛三 [18] SONG X H, XU H T, YE W D, et al. Practical synthesis of
烯-1,8-二醛通过 Wittig-Horner 反应、转位异构制备 lycopene[J]. Organic Preparations and Procedures International,
2016, 48(4): 350-354.
全反式番茄红素。与现有的工艺相比,本文设计了 [19] PACE V, CASTOLDI L, MAZZEO E, et al. Efficient access to
all-carbon quaternary and tertiary α-functionalized homoallyl-type
以 Wittig-Horner 反应为特征的合成路线,避免了使 aldehydes from ketones[J]. Angewandte Chemie International
用 Wittig 反应导致的副产物不易分离的问题;反应 Edition, 2017, 56(41): 12677-12682.
[20] LI Wei (李伟), DING Xiaolin (丁霄霖), DAI Qingping (戴庆平), et
中使用的假性紫罗兰酮与 2,7-二甲基-2,4,6-辛三烯 al. Purity determination of lycopene by different scanning
-1,8-二醛是在类胡萝卜素工业生产中普遍应用的化 calorimetry[J]. Food Science (食品科学), 2002, 23(9): 87-89.
[21] ZHANG Wei (张玮), LEI Awang (雷阿旺), ZHAO Zhili (赵志利).
工中间体,原料来源广泛;通过 3 步反应合成番茄 Synthesis of Pseudoionones over solid base catalysts[J]. Guangzhou
红素,反应步骤短,反应总产率为 37.0%,具有一 Chemical Industry (广州化工), 2010, 38(5): 157-158, 162.
[22] HAN Liying (韩丽颖), LI Xianggao (李祥高), WANG Shirong (王
定的工业化潜力。应用一种 α-取代-α,β-不饱和醛的 世荣), et al. Synthesis optimization and optoelectronic properties of
4-(2,2-diphenylethenyl)-N, N-bis[(4-methyl)-phenyl] anilin[J]. Fine
制备方法于番茄红素的合成中,为简化与改良番茄 Chemicals (精细化工), 2013, 30(10): 1096-1101.