Page 81 - 《精细化工》2020年第3期
P. 81

第 3 期                    何丽华,等:  基于 pH 敏感型葡聚糖水凝胶微球的药物载体                                  ·499·


                 Applied Polymer Science, 1991, 43(5): 901-914.     chitosan/dextran-based  hydrogels  for  surgical  use[J].  Macromolecular
            [2]   LIU J, HUANG Y, KUMAR A, et al. pH-sensitive nano-systems for   Symposia, 2009, 279(1):151-157.
                 drug delivery in cancer therapy[J].  Biotechnology Advances, 2014,   [15]  ZI Yaxin (訾娅鑫), LEI Jinfeng (雷金凤), XU Zhilang (徐志朗), et
                 32(4): 693-710.                                   al.  Preparation  and  biomedical  applications  of  oxidized
            [3]   PARK S H, SHIN H S, PARK S N. A novel pH-responsive hydrogel   polysaccharides[J]. Chinese Journal of Bioprocess Engineering (生物
                 based  on  carboxymethyl  cellulose/2-hydroxyethyl  acrylate  for   加工过程), 2018, 16(1): 31-37.
                 transdermal  delivery  of  naringenin[J].  Carbohydrate  Polymers,  2018,   [16]  KRISTIANSEN  K  A,  POTTHAST  A,  CHRISTENSEN  B  E.
                 200: 341-352.                                     Periodate oxidation of polysaccharides for modification of chemical
            [4]   KOUSAR  A,  LIU  J,  MEHWISH  N,  et al.  pH-regulated   and  physical  properties[J].  Carbohydrate  Research,  2010,  345(10):
                 supramolecular  chirality  of  phenylalanine-based  hydrogels[J].   1264-1271.
                 Materials Today Chemistry, 2019, 11: 217-224.     [17]  MA Shoudong (马守栋), LIU Li (刘莉), LIU Bangguo (刘邦国), et
            [5]   QIAN  C,  ZHANG  T,  GRAVESANDE  J,  et al.  Injectable  and   al.  Preparation  and  characterization  of  oxidized  dextran[J].  China
                 self-healing  polysaccharide-based  hydrogel  for  pH-responsive  drug   Practical Medicine (中国实用医药), 2008, 3(3): 14-15.
                 release[J]. International Journal of Biological Macromolecules, 2019,   [18]  LI  Y  L,  LIU  C,  TAN  Y,  et al.  In  situ  hydrogel  constructed  by
                 123: 140-148.                                     starch-based  nanoparticles  via a Schiff  base reaction[J].
            [6]   SONAWANE S J, KALHAPURE R S, GOVENDER T. Hydrazone   Carbohydrate Polymers, 2014, 110: 87-94.
                 linkages  in  pH  responsive  drug  delivery  systems[J].  European   [19]  MULIK A R, DHONGADE S. Synthesis of some new 2-methyl-1,
                 Journal of Pharmaceutical Sciences, 2017, 99: 45-65.     4-benzothiazine-3(1H)-one  derivatives  as  potential  vasodilators[J].
            [7]   DU J Z, DU X J, MAO C Q, et al.  Tailor-made dual pH-sensitive   Journal of Chemistry, 2004, 1(4): 206-210.
                 polymer-doxorubicin  nanoparticles  for  efficient  anticancer  drug   [20]  ZHOU  H  R,  ZHANG  J  Y,  JIANG  H.  The  preparation  and
                 delivery[J].  Journal  of  the  American  Chemical  Society,  2011,   characteristics of chitosan-acetaminophen drug-loading micropheres[J].
                 133(44): 17560-17563.                             Advanced Materials Research, 2012, 586: 161-165.
            [8]   JIN Y, SONG L, SU Y, et al. Oxime linkage: A robust tool for the   [21]  BHOSALE  R  S,  SHITRE  G  V,  KUMAR  R,  et al.  A
                 design of pH-sensitive polymeric drug carriers[J]. Biomacromolecules,   8-hydroxypyrene-1, 3, 6-trisulfonic acid trisodium salt (HPTS) based
                 2011, 12(10): 3460-3468.                          colorimetric and green turn-on fluorescent sensor for the detection of
            [9]   ZHU S J, LANSAKARA D S P, LI X R, et al. Lysosomal delivery of   arginine and lysine in aqueous solution[J]. Sensors and Actuators B:
                 a lipophilic gemcitabine prodrug using novel acid-sensitive micelles   Chemical, 2017, 241: 1270-1275.
                 improved  its  antitumor  activity[J].  Bioconjugate  Chemistry,  2012,   [22]  MC  CRACKEN  K  E,  TAT  T,  PAZ  V,  et al.  Smartphone-based
                 23(5): 966-980.                                   fluorescence  detection  of bisphenol  A  from  water  samples[J].  RSC
            [10]  MURA  S,  NICOLAS  J,  COUVEREUR  P.  Stimuli-responsive   Advances, 2017, 7(15): 9237-9243.
                 nanocarriers  for  drug  delivery[J].  Nature  Materials,  2013,  12(11):   [23]  CHU C S, LO Y L. Highly sensitive and linear optical fiber carbon
                 991-1003.                                         dioxide sensor based on sol-gel matrix doped with silica particles and
            [11]  SU H Y, ZHANG W, WU Y Y, et al. Schiff base-containing dextran   HPTS[J].  Sensors  and  Actuators  B:  Chemical,  2009,  143(1):
                 nanogel  as  pH-sensitive  drug  delivery  system  of  doxorubicin:   205-210.
                 Synthesis and characterization[J]. Journal of Biomaterials Applications,   [24]  ZHOU  Z,  CAO  D,  LIU  L,  et al.  Fabrication  and  properties  of
                 2018, 33(2):170-181.                              gelatin/chitosan  microspheres  loaded with  5-fluorouracil[J].  Journal
            [12]  EMAMI  Z,  EHSANI  M,  ZANDI  M,  et al.  Controlling  alginate   of Macromolecular Science, Part B, 2013, 52(7): 973-983.
                 oxidation  conditions  for  making  alginate-gelatin  hydrogels[J].   [25]  SU  H  Y,  JIA  Q  M,  SHAN  S  Y.  Synthesis  and  characterization  of
                 Carbohydrate Polymers, 2018, 198: 509-517.        Schiff  base  contained  dextran  microgels  in  water-in-oil  inverse
            [13]  AMER  H,  NYPELO  T,  SULAEVA  I,  et al.  Synthesis  and   microemulsion[J]. Carbohydrate Polymers, 2016, 152: 156-162.
                 characterization  of  periodate-oxidized  polysaccharides:  Dialdehyde   [26]  MAIA J, FERREIRA L, RUI C, et al. Synthesis and characterization
                 xylan (DAX)[J]. Biomacromolecules, 2016, 17(9): 2972-2980.   of  new  injectable  and  degradable  dextran-based  hydrogels[J].
            [14]  LIU G, SHI Z, KURIGER T, et al. Synthesis and characterization of   Polymer, 2005, 46(23): 9604-9614.
   76   77   78   79   80   81   82   83   84   85   86