Page 182 - 《精细化工》2020年第6期
P. 182
·1248· 精细化工 FINE CHEMICALS 第 37 卷
[17] SAVIC V, LLIC T, NIKOLIC I, et al. Tacrolimus-loaded lecithin- [25] GARCES A, AMARAL M H, SOUSA L J M. Formulations based on
based nanostructured lipid carrier and nanoemulsion with propylene solid lipid nanoparticles (SLN) and nanostructured lipid carriers
glycol monocaprylate as a liquid lipid: Formulation characterization (NLC) for cutaneous use: A review[J]. European Journal of
and assessment of dermal delivery compared to referent ointment[J]. Pharmaceutical Sciences, 2018, 112: 159-167.
International Journal of Pharmaceutics, 2019, 569: 1-11. [26] NANJWADE B K, KADAM V T, MANVI F V. Formulation and
[18] WOLF M, KLANG V, STOJCIC T, et al. NLC versus nanoemulsions: characterization of nanostructured lipid carrier of ubiquinone
Effect on physiological skin parameters during regular in vivo (coenzyme Q10)[J]. Journal of Biomedical Nanotechnology, 2013,
application and impact on drug penetration[J]. International Journal 9(3): 450-460.
of Pharmaceutics, 2018, 549(1/2): 343-351. [27] SHI J H (施介华), XU Y (徐艳). Study on inclusion interaction of
[19] WOLF M, REITER F, HEUSER T, et al. Monoacyl- coenzyme Q10 and cyclodextrins using spectroscopic methods[J].
phospatidylcholine based drug delivery systems for lipophilic drugs: Journal of Zhejiang University of Technology (浙江工业大学学报),
Nanostructured lipid carriers vs. nano-sized emulsions[J]. Journal of 2013, 41(5): 490-494.
Drug Delivery Science and Technology, 2018, 46: 490-497. [28] KANG Q, LIU J, ZHAO Y, et al. Transdermal delivery system of
[20] EL-SALAMOUNI N S, FARID R M, EL-KAMEL A H, et al. nanostructured lipid carriers loaded with celastrol and indomethacin:
Nanostructured lipid carriers for intraocular brimonidinelocalisation: Optimization, characterization and efficacy evaluation for rheumatoid
Development, in-vitro and in-vivo evaluation[J]. Journal of arthritis[J]. Artificial Cells, Nanomedicineand Biotechnology, 2018,
Microencapsulation, 2018, 35(1): 102-113. 46: 585-597.
[21] LEE N H, PARK S H, PARK S N. Preparation and characterization [29] LOO C, BASRI M, ISMAIL R, et al. Effect of compositions in
of novel pseudo ceramide-based nanostructured lipid carriers for nanostructured lipid carriers (NLC) on skin hydration and
transdermal delivery of apigenin[J]. Journal of Drug Delivery occlusion[J]. International Journal of Nanomedicine, 2013, 8: 13-22.
Science and Technology, 2018, 48: 245-252. [30] SALA M, DIAB R, ELAISSARI A. Lipid nanocarriers as skin drug
[22] COMBRINCK J, OTTO A, PLESSIS J. Whey protein/polysaccharide- delivery systems: Properties, mechanisms of skin interactions and
stabilized emulsions: Effect of polymer type and pH on release and medical applications[J]. International Journal of Pharmaceutics,
topical delivery of salicylic acid[J]. Aaps Pharmscitech, 2014, 15(3): 2018, 535(1/2): 1-17.
588-600. [31] KUMAR S, ZAKREWSKY M, CHEN M, et al. Peptides as skin
[23] LIANG R (梁蓉), WU L N (吴丽娜), YANG C (杨成), et al. penetration enhancers: Mechanisms of action[J]. Journal of
Preparation and characterization of coenzyme Q10-loaded Controlled Release, 2015, 199: 168-178..
nanostructured lipid carriers modified by ouaternized chitosan[J]. [32] NAN L Y, LIU C, LI Q Y, et al. Investigation of the enhancement
Fine Chemicals (精细化工), 2016, 33(10): 1112-1117. effect of the natural transdermal permeation enhancers from
[24] WU L N (吴丽娜), LIANG R (梁蓉),YANG C (杨成), et al. ledumpalustre L. var. angustum N. Busch: Mechanistic insight based
Preparation and characterization of CoQ10-loaded nanostructured on interaction among drug, enhancers and skin[J]. European Journal
lipid carriers[J]. Fine Chemicals (精细化工), 2016, 33(1): 65-70. of Pharmaceutical Sciences, 2018, 124: 105-113.
(上接第 1226 页) 1(8): 1052-1062.
[20] ZHANG T F (张腾飞), WANG M Z (王明智), WANG Y R (王一茹),
[13] JIRÁTOVÁ K, SPOJAKINA A, KALUZA L, et al. et al. Effect of Ni precursors on the performance of Ni/SBA-15
Hydrodesulfurization activities of NiMo catalysts supported on
catalysts for methane dry reforming[J]. Fine Chemicals (精细化工),
mechanochemically prepared Al-Ce mixed oxides[J]. Chinese 2016, 33(1): 42-48.
Journal of Catalysis, 2016, 37(2): 258-267.
[21] LI H T, XU Y L, GAO C G, et al. Structural and textural evolution of
[14] XIE L S, LI J S, ZHANG T B, et al. Role of milling time and Ni Ni/γ-Al 2O 3 catalyst under hydrothermal conditions[J]. Catalysis
content on dehydrogenation behavior of MgH 2/Ni composite[J].
Today, 2010, 158(3/4): 475-480.
Transactions of Nonferrous Metals Society of China, 2017, 27(3): [22] WALL C, POHL A, KNAPP M, et al. Production of nanocrystalline
569-577. lithium fluoride by planetary ball-milling[J]. Powder Technology,
[15] LI C Y, ZHANG H J, CHEN Z Q. Reaction between NiO and Al 2O 3 2014, 264: 409-417.
in NiO/γ-Al 2O 3 catalysts probed by positronium atom[J]. Applied [23] NAMBA S, TAKAGAKI A, JIMURA K, et al. Effects of ball-milling
Surface Science, 2013, 266: 17-21. treatment on physicochemical properties and solid base activity of
[16] ZHANG Y H (张玉红), XIONG G X (熊国兴), SHENG S S (盛世 hexagonal boron nitrides[J]. Catalysis Science & Technology, 2019,
善), et al. Interaction of NiO with γ-Al 2O 3 supporter of NiO/γ-Al 2O 3 9: 302-309.
catalysts[J]. Acta Physico-Chimica Sinica (物理化学学报), 1999, [24] DIEUZEIDE M L, IANNIBELLI V, JOBBAGY M, et al. Steam
15(8): 735-741. reforming of glycerol over Ni/Mg/γ-Al 2O 3 catalysts. Effect of
[17] KOBAYASHI Y, HORIGUCHI J, KOBAYASHI S, et al. Effect of calcination temperatures[J]. International Journal of Hydrogen
NiO content in mesoporous NiO-Al 2O 3 catalysts for high pressure Energy, 2012, 37(19): 14926-14930.
partial oxidation of methane to syngas[J]. Applied Catalysis A: [25] WANG R Q (王忍青), DUAN W J (段伟杰), JIANG Z D (江志东),
General, 2011, 395(1/2): 129-137. et al. Development and application of La 0.8Sr 0.2MnO 3/ MgAl 2O 4
[18] LIU Z W,ZHANG H J,CHEN Z Q. Monolayer dispersion of CoO wire-mesh honeycomb catalyst for catalytic combustion of air diluted
on Al 2O 3 probed by positronium atom[J]. Applied Surface Science, methane[J]. Fine Chemicals (精细化工), 2019, 36(2): 250-256.
2014, 293: 326-331. [26] DUAN W J (段伟杰), LI H Y (李怀有), JIANG Z D (江志东), et al.
[19] WU G W, ZHANG C X, LI S R, et al. Hydrogen production via La 0.8Ca 0.2FeO 3/MgAl 2O 4 wire-mesh honeycomb for catalytic
glycerol steam reforming over Ni/Al 2O 3: Influence of nickel combustion of air diluted methane[J]. Acta Scientiae Circumstantiae
precursors[J]. ACS Sustainable Chemistry & Engineering, 2013, (环境科学学报), 2017, 37(5): 1902-1911.