Page 222 - 《精细化工》2020年第6期
P. 222

·1288·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 29(6): 984-990.                                   Polymers, 2019, 11(3): 540.
            [7]   CHEN C (陈晨), ZHU Y (朱颖), QU L H (翟梁皓), et al. Research   [23]  LEE J J, CUMMINGS S D, BECKMAN E J, et al. The solubility of
                 progress  of  supercritical  carbon  dioxide  fracturing  technology[J].   low molecular weight poly(dimethyl siloxane) in dense CO 2 and its
                 Exploration Engineering (Rock & Soil Drilling and Tunneling) (探矿  use as a CO 2-philic segment[J]. Journal of Supercritical Fluids, 2017,
                 工程 (岩土钻掘工程)), 2018, 45(10): 21-26.                119: 17-25.
            [8]   LARSHKARBOLOOKI  M,  EFTEKHARI  M,  NAJIMI  S,  et al.   [24]  LI  Q,  WANG  Y  L,  LI  Q  C,  et al.  Study  on  the  optimization  of
                 Minimum  miscibility  pressure  of  CO 2  and  crude  oil  during  CO 2   silicone  copolymer  synthesis  and  the  evaluation  of  its  thickening
                 injection  in  the  reservoir[J].  Journal  of  Supercritical  Fluids,  2017,   performance[J]. RSC Advances, 2018, 8: 8770-8778.
                 127: 121-128.                                 [25]  ZHANG Y F, ZHU Z W, BAI Z G, et al. Incorporating a silicon unit
            [9]   GAO C H, LI X L, GUO L L, et al. Heavy oil production by carbon   into a polyether backbone-an effective approach to enhance polyether
                 dioxide  injection[J].  Greenhouse  Gases:  Science  and  Technology,   solubility in CO 2[J]. RSC Advances, 2017, 7(27): 16616- 16622.
                 2013, 3(3): 185-195.                          [26]  DU  M  Y,  XIN  S,  DAI  C  L,  et al.  Laboratory  experiment  on  a
            [10]  MIDDLETON  R,  CAREY  B,  CURRIER  R,  et al.  Shale  gas  and   toluene-polydimethyl silicone thickened supercritical carbon dioxide
                 non-aqueous  fracturing  fluids:  Opportunities  and  challenges  for   fracturing  fluid[J].  Journal  of  Petroleum  Science  &  Engineering,
                 supercritical CO 2[J]. Applied Energy, 2015, 147: 500-509.     2018, 166: 369-374.
            [11]  ALHINAI  N  M,  SAEEDI  A,  WOOD  C  D,  et al.  Experimental   [27]  SARBU T, STYRANEC T, BECKMAN E. Non-fluorous polymers
                 evaluations  of  polymeric  solubility  and  thickeners  for  supercritical   with  very  high  solubility  in  supercritical  CO 2  down  to  low
                 CO 2  at  high  temperatures  for  enhanced  oil  recovery[J].  Energy  &   pressures[J]. Nature, 2000, 405(6783): 165-168.
                 Fuels, 2018, 32(2): 1600-1611.                [28]  BHAT S I, AHMADI Y, AHMAD S. Recent advances in structural
            [12]  HOU L, SUN B J, WANG Z Y, et al. Experimental study of particle   modifications  of  hyperbranched  polymers  and  their  applications[J].
                 settling  in  supercritical  carbon  dioxide[J].  Journal  of  Supercritical   Industrial & Engineering Chemistry Research, 2018, 57(32): 10754-
                 Fluids, 2015, 100: 121-128.                       10785.
            [13]  HELLER J P, DANDGE D K, CARD R J, et al. Direct thickeners for   [29]  ZHANG  H  R,  LIANG  G  Z,  Gu  A  J,  et al.  Facile  preparation  of
                 mobility  control  of  CO 2  floods[J].  Society  of  Petroleum  Engineers   hyperbranchedpolysiloxane-grafted  aramid  fibers  with  simultaneously
                 Journal, 1985, 25: 679-686.                       improved UV resistance, surface activity, and thermal and mechanical
            [14]  DESIMONE  J  M,  MAURY  E  E,  MENCELOGLU  Y  Z,  et al.   properties[J].  Industrial  &  Engineering  Chemistry  Research,  2014,
                 Dispersion  polymerizations  in  supercritical  carbon  dioxide[J].   53(7): 2684-2696.
                 Science, 1994, 265(5170): 356-359.            [30]  WANG Z, ZHAO S J, PANG H W, et al. Developing eco-friendly
            [15]  HUANG Z H, SHI C M, XU J H, et al. Enhancement of the viscosity   high-strength  soy  adhesives  with  improved  ductility  through
                 of  carbon  dioxide  using  styrene/fluoroacrylate  copolymers[J].   multiphase core–shell hyperbranched polysiloxane[J]. ACS Sustainable
                 Macromolecules, 2000, 33(15): 5437-5442.          Chemistry & Engineering, 2019, 7(8): 7784-7794.
            [16]  GOICOCHEA  A  G,  FIROOZABADI  A.  CO 2  viscosification  by   [31]  SUNDER  A,  HANSELMANN  R,  FREY  H,  et al.  Controlled
                 functional  molecules  from  mesoscale  simulations[J].  Journal  of   synthesis  of  hyperbranched  polyglycerols  by  ring-opening
                 Physical Chemistry C, 2019, 123(48): 29461-29467.     multibranching  polymerization[J].  Macromolecules,  1999,  32(13):
            [17]  BAE  J  H,  IRANI  C  A.  The  thickened  CO 2  process  utilizing  a   4240-4246.
                 commercial silicon polymer and toluene process[J]. SPE Advanced   [32]  DZIELAWA  J,  RUBAS  A,  LUBBERS  C,  et  al.  Carbon  dioxide
                 Technology Series, 1993, 1(1), 166-171.           solubility  enhancement  through  silicone  functionalization:  “CO 2-
            [18]  HU D D, SUN S J, YUAN P Q, et al. Evaluation of CO 2 -philicity of   philic”  oligo(dimethylsiloxane)-substituted  diphosphonates[J].  Separation
                 poly(vinyl  acetate)  and  poly(vinyl  acetate-alt-maleate)  copolymers   Science and Technology, 2008, 43: 2520-2536.
                 through molecular modeling and dissolution behavior measurement[J].   [33]  CHEN S Y, ZHUO D X, HU J T. Sol–gel technology plus radiation
                 Journal of Physical Chemistry B, 2015, 119: 3194-3204.     curing: a novel and facile technique for preparing thick, large-area
            [19]  HU D D, SUN S J, YUAN P Q, et al. Exploration of CO 2-philicity of   hyperbranched  polysiloxane  hybrids[J].  Industrial  &  Engineering
                 poly(vinyl acetate-co-alkyl vinyl ether) through molecular modeling   Chemistry Research, 2018, 57(31): 10372-10378.
                 and  dissolution  behavior  measurement[J].  Journal  of  Physical   [34]  LIU H C, GAO X X, DENG B, et al. Simultaneously reinforcing and
                 Chemistry B, 2015, 119: 12490-12501.              toughening epoxy network with a novel hyperbranched polysiloxane
            [20]  BAO  L,  FANG  S  Y,  HU  D  D,  et al.  Enhancement  of  the   modifier[J].  Journal  of  Applied  Polymer  Science,  2018,  135(23):
                 CO 2-philicity  of  poly(vinyl  ester)s  by  end-group  modification  with   46340.
                 branched chains[J]. Journal of Supercritical Fluids, 2017, 127: 129-136.     [35]  SUN B J, SUN W C, WANG H G, et al. Molecular simulation aided
            [21]  HU D D, ZHANG Y N, SU M, et al. Effect of molecular weight on   design of copolymer thickeners for supercritical CO 2 as non-aqueous
                 CO 2-philicity  of  poly(vinyl  acetate)  with  different  molecular  chain   fracturing fluid[J]. Journal of CO 2 Utilization, 2018, 28: 107-116.
                 structure[J]. Journal of Supercritical Fluids, 2016, 118: 96-106.     [36]  SUN W C, SUN B J, LI Y, et al. Thickening supercritical CO 2 with
            [22]  LI Q, WANG Y L, WANG F L, et al. Effect of a modified silicone as   π-stacked  co-polymers:  molecular  insights  into  the  role  of
                 a thickener on rheology of liquid CO 2 and its fracturing capacity[J].   intermolecular interaction[J]. Polymers, 2018, 10(3): 268.
   217   218   219   220   221   222   223   224   225   226   227