Page 222 - 《精细化工》2020年第6期
P. 222
·1288· 精细化工 FINE CHEMICALS 第 37 卷
29(6): 984-990. Polymers, 2019, 11(3): 540.
[7] CHEN C (陈晨), ZHU Y (朱颖), QU L H (翟梁皓), et al. Research [23] LEE J J, CUMMINGS S D, BECKMAN E J, et al. The solubility of
progress of supercritical carbon dioxide fracturing technology[J]. low molecular weight poly(dimethyl siloxane) in dense CO 2 and its
Exploration Engineering (Rock & Soil Drilling and Tunneling) (探矿 use as a CO 2-philic segment[J]. Journal of Supercritical Fluids, 2017,
工程 (岩土钻掘工程)), 2018, 45(10): 21-26. 119: 17-25.
[8] LARSHKARBOLOOKI M, EFTEKHARI M, NAJIMI S, et al. [24] LI Q, WANG Y L, LI Q C, et al. Study on the optimization of
Minimum miscibility pressure of CO 2 and crude oil during CO 2 silicone copolymer synthesis and the evaluation of its thickening
injection in the reservoir[J]. Journal of Supercritical Fluids, 2017, performance[J]. RSC Advances, 2018, 8: 8770-8778.
127: 121-128. [25] ZHANG Y F, ZHU Z W, BAI Z G, et al. Incorporating a silicon unit
[9] GAO C H, LI X L, GUO L L, et al. Heavy oil production by carbon into a polyether backbone-an effective approach to enhance polyether
dioxide injection[J]. Greenhouse Gases: Science and Technology, solubility in CO 2[J]. RSC Advances, 2017, 7(27): 16616- 16622.
2013, 3(3): 185-195. [26] DU M Y, XIN S, DAI C L, et al. Laboratory experiment on a
[10] MIDDLETON R, CAREY B, CURRIER R, et al. Shale gas and toluene-polydimethyl silicone thickened supercritical carbon dioxide
non-aqueous fracturing fluids: Opportunities and challenges for fracturing fluid[J]. Journal of Petroleum Science & Engineering,
supercritical CO 2[J]. Applied Energy, 2015, 147: 500-509. 2018, 166: 369-374.
[11] ALHINAI N M, SAEEDI A, WOOD C D, et al. Experimental [27] SARBU T, STYRANEC T, BECKMAN E. Non-fluorous polymers
evaluations of polymeric solubility and thickeners for supercritical with very high solubility in supercritical CO 2 down to low
CO 2 at high temperatures for enhanced oil recovery[J]. Energy & pressures[J]. Nature, 2000, 405(6783): 165-168.
Fuels, 2018, 32(2): 1600-1611. [28] BHAT S I, AHMADI Y, AHMAD S. Recent advances in structural
[12] HOU L, SUN B J, WANG Z Y, et al. Experimental study of particle modifications of hyperbranched polymers and their applications[J].
settling in supercritical carbon dioxide[J]. Journal of Supercritical Industrial & Engineering Chemistry Research, 2018, 57(32): 10754-
Fluids, 2015, 100: 121-128. 10785.
[13] HELLER J P, DANDGE D K, CARD R J, et al. Direct thickeners for [29] ZHANG H R, LIANG G Z, Gu A J, et al. Facile preparation of
mobility control of CO 2 floods[J]. Society of Petroleum Engineers hyperbranchedpolysiloxane-grafted aramid fibers with simultaneously
Journal, 1985, 25: 679-686. improved UV resistance, surface activity, and thermal and mechanical
[14] DESIMONE J M, MAURY E E, MENCELOGLU Y Z, et al. properties[J]. Industrial & Engineering Chemistry Research, 2014,
Dispersion polymerizations in supercritical carbon dioxide[J]. 53(7): 2684-2696.
Science, 1994, 265(5170): 356-359. [30] WANG Z, ZHAO S J, PANG H W, et al. Developing eco-friendly
[15] HUANG Z H, SHI C M, XU J H, et al. Enhancement of the viscosity high-strength soy adhesives with improved ductility through
of carbon dioxide using styrene/fluoroacrylate copolymers[J]. multiphase core–shell hyperbranched polysiloxane[J]. ACS Sustainable
Macromolecules, 2000, 33(15): 5437-5442. Chemistry & Engineering, 2019, 7(8): 7784-7794.
[16] GOICOCHEA A G, FIROOZABADI A. CO 2 viscosification by [31] SUNDER A, HANSELMANN R, FREY H, et al. Controlled
functional molecules from mesoscale simulations[J]. Journal of synthesis of hyperbranched polyglycerols by ring-opening
Physical Chemistry C, 2019, 123(48): 29461-29467. multibranching polymerization[J]. Macromolecules, 1999, 32(13):
[17] BAE J H, IRANI C A. The thickened CO 2 process utilizing a 4240-4246.
commercial silicon polymer and toluene process[J]. SPE Advanced [32] DZIELAWA J, RUBAS A, LUBBERS C, et al. Carbon dioxide
Technology Series, 1993, 1(1), 166-171. solubility enhancement through silicone functionalization: “CO 2-
[18] HU D D, SUN S J, YUAN P Q, et al. Evaluation of CO 2 -philicity of philic” oligo(dimethylsiloxane)-substituted diphosphonates[J]. Separation
poly(vinyl acetate) and poly(vinyl acetate-alt-maleate) copolymers Science and Technology, 2008, 43: 2520-2536.
through molecular modeling and dissolution behavior measurement[J]. [33] CHEN S Y, ZHUO D X, HU J T. Sol–gel technology plus radiation
Journal of Physical Chemistry B, 2015, 119: 3194-3204. curing: a novel and facile technique for preparing thick, large-area
[19] HU D D, SUN S J, YUAN P Q, et al. Exploration of CO 2-philicity of hyperbranched polysiloxane hybrids[J]. Industrial & Engineering
poly(vinyl acetate-co-alkyl vinyl ether) through molecular modeling Chemistry Research, 2018, 57(31): 10372-10378.
and dissolution behavior measurement[J]. Journal of Physical [34] LIU H C, GAO X X, DENG B, et al. Simultaneously reinforcing and
Chemistry B, 2015, 119: 12490-12501. toughening epoxy network with a novel hyperbranched polysiloxane
[20] BAO L, FANG S Y, HU D D, et al. Enhancement of the modifier[J]. Journal of Applied Polymer Science, 2018, 135(23):
CO 2-philicity of poly(vinyl ester)s by end-group modification with 46340.
branched chains[J]. Journal of Supercritical Fluids, 2017, 127: 129-136. [35] SUN B J, SUN W C, WANG H G, et al. Molecular simulation aided
[21] HU D D, ZHANG Y N, SU M, et al. Effect of molecular weight on design of copolymer thickeners for supercritical CO 2 as non-aqueous
CO 2-philicity of poly(vinyl acetate) with different molecular chain fracturing fluid[J]. Journal of CO 2 Utilization, 2018, 28: 107-116.
structure[J]. Journal of Supercritical Fluids, 2016, 118: 96-106. [36] SUN W C, SUN B J, LI Y, et al. Thickening supercritical CO 2 with
[22] LI Q, WANG Y L, WANG F L, et al. Effect of a modified silicone as π-stacked co-polymers: molecular insights into the role of
a thickener on rheology of liquid CO 2 and its fracturing capacity[J]. intermolecular interaction[J]. Polymers, 2018, 10(3): 268.