Page 68 - 《精细化工》2020年第8期
P. 68
·1566· 精细化工 FINE CHEMICALS 第 37 卷
Journal of Energy Chemistry, 2016, 25(2): 169-170. 2016, 515: 126-135.
[11] CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for [31] DEROUANE E G, VEDRINE J C, PINTO R R, et al. The acidity of
one-step conversion of syngas into aromatics with excellent zeolites: Concepts, measurements and relation to catalysis: A review
selectivity and stability[J]. Chem, 2017, 3(2): 334-347. on experimental and theoretical methods for the study of zeolite
[12] GAO J J, JIA C M, LIU B. Direct and selective hydrogenation of acidity[J]. Catalysis Reviews, 2013, 55(4): 454-515.
CO 2 to ethylene and propene by bifunctional catalysts[J]. Catalysis [32] RAVEENDRA G, LI C M, CHENG Y, et al. Direct transformation of
Science & Technology, 2017, 7(23): 5602-5607. syngas to lower olefins synthesis over hybrid Zn-Al 2O 3/SAPO-34
[13] GAO P, LI S G, BU X N, et al. Direct conversion of CO 2 into liquid catalysts[J]. New Journal of Chemistry, 2018, 42(6): 4419-4431.
fuels with high selectivity over a bifunctional catalyst[J]. Nature [33] ZHANG P, MENG F H, LI X J, et al. Excellent selectivity for direct
Chemistry, 2017, 9(10): 1019-1024. conversion of syngas to light olefins over Mn-Ga oxide and
[14] YANG X L (杨晓丽), SU X (苏雄), CHEN D (陈德), et al. Direct SAPO-34 bifunctional catalyst[J]. Catalysis Science & Technology,
conversion of syngas to aromatics: A review of recent studies[J]. 2019, 9(20): 5577-5581.
Chinese Journal of Catalysis (催化学报), 2020, 41(4): 561-573. [34] GUISNET M, COSTA L, RIBEIRO F R. Prevention of zeolite
[15] LI Y, YU J H. New stories of zeolite structures: Their descriptions, deactivation by coking[J]. Journal of Molecular Catalysis A:
determinations, predictions, and evaluations[J]. Chemical Reviews, Chemical, 2009, 305(1): 69-83.
2014, 114(14): 7268-316. [35] CHEN D, MOLJORD K, HOLMEN A. Holmen, a methanol to
[16] LIU X L, ZHOU W, YANG Y D, et al. Design of efficient olefins review: Diffusion, coke formation and deactivation on SAPO
bifunctional catalysts for direct conversion of syngas into lower type catalysts[J]. Microporous and Mesoporous Materials, 2012, 164:
olefins via methanol/dimethyl ether intermediates[J]. Chemical 239-250.
Science, 2018, 9(20): 4708-4718. [36] PARK J W, KIM S J, SEO M, et al. Product selectivity and catalytic
[17] SU J J, ZHOU H B, LIU S, et al. Syngas to light olefins conversion deactivation of MOR zeolites with different acid site densities in
with high olefin/paraffin ratio using ZnCrO x/AlPO-18 bifunctional methanol-to-olefin (MTO) reactions[J]. Applied Catalysis A: General,
catalysts[J]. Nature Communications, 2019, 10(1): 1297-1305. 2008, 349(1): 76-85.
[18] LI G, JIAO F, MIAO D Y, et al. Selective conversion of syngas to [37] ZHANG X B, ZHANG A F, JIANG X, et al. Utilization of CO 2 for
propane over ZnCrO x-SSZ-39 OX-ZEO catalysts[J]. Journal of aromatics production over ZnO/ZrO 2-ZSM-5 tandem catalyst[J].
Energy Chemistry, 2019, 36: 141-147. Journal of CO 2 Utilization, 2019, 29: 140-145.
[19] WANG X X, YANG G H, ZHANG J F, et al. Synthesis of isoalkanes [38] SUN Q M, XIE Z K, YU J H. The state-of-the-art synthetic strategies
over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO 2 hydrogenation[J]. for SAPO-34 zeolite catalysts in methanol-to-olefin conversion[J].
Chemical Communications, 2016, 52(46): 7352-7355. National Science Review, 2018, 5(4): 542-558.
[20] YANG J H, PAN X L, JIAO F, et al. Direct conversion of syngas to [39] WANG P F, ZHA F, YAO L, et al. Synthesis of light olefins from
aromatics[J]. Chemical Communications, 2017, 53(81): 11146-11149. CO 2 hydrogenation over (CuO-ZnO)-kaolin/SAPO-34 molecular
[21] LI N, JIAO F, PAN X L, et al. High-quality gasoline directly from sieves[J]. Applied Clay Science, 2018, 163: 249-256.
syngas by dual metal oxide-zeolite (OX-ZEO) Catalysis[J]. Angewandte [40] HUANG Y X, MA H F, XU Z Q, et al. Role of nanosized sheet-like
Chemie International Edition, 2019, 58(22): 7400-7404. SAPO-34 in bifunctional catalyst for syngas-to-olefins reaction[J].
[22] DANG S S, GAO P, LIU Z Y, et al. Role of zirconium in direct CO 2 Fuel, 2020, 273: 117771-117778.
hydrogenation to lower olefins on oxide/zeolite bifunctional [41] YANG J H, GONG K, MIAO D Y, et al. Enhanced aromatic
catalysts[J]. Journal of Catalysis, 2018, 364: 382-393. selectivity by the sheet-like ZSM-5 in syngas conversion[J]. Journal
[23] DOKANIA A, DUTTA CHOWDHURY A, RAMIREA A, et al. of Energy Chemistry, 2018, 35: 44-48.
Acidity modification of ZSM-5 for enhanced production of light [42] DANG S S, LI S G, YANG C G, et al. Selective transformation of
olefins from CO 2[J]. Journal of Catalysis, 2020, 381: 347-354. CO 2 and H 2 into lower olefins over In 2O 3-ZnZrO x/SAPO-34
[24] YU X (于翔), WANG J H (王军华), ZHANG L W (张立伟), et al. bifunctional catalysts[J]. ChemSusChem, 2019, 12: 1-11.
Dimethyl ether synthesis from methanol and syngas over different [43] DUGKHUNTOD P, WATTANAKIT C. A comprehensive review of
sized HY zeolite and Cu-Mn-Zn/HY bifunctional catalyst[J]. Chinese the applications of hierarchical zeolite nanosheets and nanoparticle
Journal of Catalysis (催化学报), 2010, 31(5): 591-596. assemblies in light olefin production[J]. Catalysts, 2020, 10(2): 245-259.
[25] JIAO F, PAN X L, GONG K, et al. Shape-selective zeolites promote [44] LI X, REZAEI F, ROWNAGHI A. Methanol-to-olefin conversion on
ethylene formation from syngas via a ketene intermediate[J]. 3D-printed ZSM-5 monolith catalysts: Effects of metal doping,
Angewandte Chemie International Edition, 2018, 57(17): 4692-4696. mesoporosity and acid strength[J]. Microporous and Mesoporous
[26] ZHOU W, KANG J C, CHENG K, et al. Direct conversion of syngas Materials, 2019, 276: 1-12.
into methyl acetate, ethanol, and ethylene by relay catalysis via the [45] WANG Y, CHEN S L, GAO Y L, et al. Enhanced methanol to olefin
intermediate dimethyl ether[J]. Angewandte Chemie International catalysis by physical mixtures of SAPO-34 molecular sieve and
Edition, 2018, 57(37): 12012-12016. MgO[J]. ACS Catalysis, 2017, 7(9): 5572-5584.
[27] WANG J Y, ZHANG A F, JIANG X, et al. Highly selective [46] HUANG H W, WANG H R, ZHU H, et al. Enhanced ethene to
conversion of CO 2 to lower hydrocarbons (C 2~C 4) over bifunctional propene ratio over Zn-modified SAPO-34 zeolites in methanol-to-
catalysts composed of In 2O 3-ZrO 2 and zeolite[J]. Journal of CO 2 olefin reaction[J]. Catalysis Science & Technology, 2019, 9(9): 2203-
Utilization, 2018, 27: 81-88. 2210.
[28] LIU T, LU T L, YANG M M, et al. Enhanced catalytic performance [47] LIU R (刘蓉), WANG P F (王鹏飞), ZHA F (查飞), et al.
of CuO-ZnO-Al 2O 3/SAPO-5 bifunctional catalysts for direct Preparation of rare earths modified SAPO-34 and its catalysis
conversion of syngas to light hydrocarbons and insights into the role performance in synthesis of light olefins from CO 2 hydrogenation[J].
of zeolite acidity[J]. Catalysis Letters, 2019, 149(12): 3338-3348. Fine Chemicals (精细化工), 2016, 33(4): 413-418, 424.
[29] YANG X L, SU X, LIANG B L, et al. The influence of alkali-treated [48] PERON D V, ZHOLOBENKO V L, DE MELO J H S, et al. External
zeolite on the oxide-zeolite syngas conversion process[J]. Catalysis surface phenomena in dealumination and desilication of large single
Science & Technology, 2018, 8(17): 4338-4348. crystals of ZSM-5 zeolite synthesized from a sustainable source[J].
[30] PLANA-PALLEJA J, ABELLO S, BERRUECO C, et al. Effect of Microporous and Mesoporous Materials, 2019, 286: 57-64.
zeolite acidity and mesoporosity on the activity of Fischer-Tropsch
Fe/ZSM-5 bifunctional catalysts[J]. Applied Catalysis A: General, (下转第 1614 页)