Page 68 - 《精细化工》2020年第8期
P. 68

·1566·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 Journal of Energy Chemistry, 2016, 25(2): 169-170.     2016, 515: 126-135.
            [11]  CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for   [31]  DEROUANE E G, VEDRINE J C, PINTO R R, et al. The acidity of
                 one-step conversion of syngas into aromatics  with excellent   zeolites: Concepts, measurements and relation to catalysis: A review
                 selectivity and stability[J]. Chem, 2017, 3(2): 334-347.     on experimental and theoretical  methods for the study of zeolite
            [12]  GAO J J, JIA C M, LIU B. Direct and selective hydrogenation of   acidity[J]. Catalysis Reviews, 2013, 55(4): 454-515.
                 CO 2 to ethylene and propene by bifunctional catalysts[J]. Catalysis   [32]  RAVEENDRA G, LI C M, CHENG Y, et al. Direct transformation of
                 Science & Technology, 2017, 7(23): 5602-5607.     syngas to lower olefins synthesis over hybrid Zn-Al 2O 3/SAPO-34
            [13]  GAO P, LI S G, BU X N, et al. Direct conversion of CO 2 into liquid   catalysts[J]. New Journal of Chemistry, 2018, 42(6): 4419-4431.
                 fuels with high selectivity over a bifunctional catalyst[J]. Nature   [33]  ZHANG P, MENG F H, LI X J, et al. Excellent selectivity for direct
                 Chemistry, 2017, 9(10): 1019-1024.                conversion of syngas to light olefins over Mn-Ga oxide and
            [14]  YANG X L (杨晓丽), SU X (苏雄), CHEN D (陈德), et al. Direct   SAPO-34 bifunctional catalyst[J]. Catalysis Science &  Technology,
                 conversion of syngas to aromatics: A review of recent studies[J].   2019, 9(20): 5577-5581.
                 Chinese Journal of Catalysis (催化学报), 2020, 41(4): 561-573.     [34]  GUISNET M,  COSTA L,  RIBEIRO F R. Prevention  of zeolite
            [15]  LI Y, YU J H. New stories of zeolite structures: Their descriptions,   deactivation by coking[J]. Journal  of Molecular Catalysis A:
                 determinations, predictions, and evaluations[J]. Chemical Reviews,   Chemical, 2009, 305(1): 69-83.
                 2014, 114(14): 7268-316.                      [35]  CHEN D, MOLJORD K, HOLMEN A. Holmen, a  methanol to
            [16]  LIU X  L,  ZHOU W, YANG  Y D,  et al. Design of efficient   olefins review: Diffusion, coke formation and deactivation on SAPO
                 bifunctional catalysts for direct conversion of syngas into lower   type catalysts[J]. Microporous and Mesoporous Materials, 2012, 164:
                 olefins  via methanol/dimethyl ether  intermediates[J].  Chemical   239-250.
                 Science, 2018, 9(20): 4708-4718.              [36]  PARK J W, KIM S J, SEO M, et al. Product selectivity and catalytic
            [17]  SU J J, ZHOU H B, LIU S, et al. Syngas to light olefins conversion   deactivation  of MOR zeolites with  different acid site densities in
                 with high olefin/paraffin ratio using  ZnCrO x/AlPO-18 bifunctional   methanol-to-olefin (MTO) reactions[J]. Applied Catalysis A: General,
                 catalysts[J]. Nature Communications, 2019, 10(1): 1297-1305.     2008, 349(1): 76-85.
            [18]  LI G, JIAO F, MIAO D Y, et al. Selective conversion of syngas to   [37]  ZHANG X B, ZHANG A F, JIANG X, et al. Utilization of CO 2 for
                 propane over ZnCrO x-SSZ-39 OX-ZEO  catalysts[J]. Journal of   aromatics production over ZnO/ZrO 2-ZSM-5 tandem catalyst[J].
                 Energy Chemistry, 2019, 36: 141-147.              Journal of CO 2 Utilization, 2019, 29: 140-145.
            [19]  WANG X X, YANG G H, ZHANG J F, et al. Synthesis of isoalkanes   [38]  SUN Q M, XIE Z K, YU J H. The state-of-the-art synthetic strategies
                 over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO 2 hydrogenation[J].   for  SAPO-34 zeolite catalysts in methanol-to-olefin conversion[J].
                 Chemical Communications, 2016, 52(46): 7352-7355.     National Science Review, 2018, 5(4): 542-558.
            [20]  YANG J H, PAN X L, JIAO F, et al. Direct conversion of syngas to   [39]  WANG P F, ZHA  F, YAO L, et al. Synthesis of light olefins from
                 aromatics[J]. Chemical Communications, 2017, 53(81): 11146-11149.     CO 2 hydrogenation over (CuO-ZnO)-kaolin/SAPO-34  molecular
            [21]  LI N, JIAO F, PAN X L, et al. High-quality gasoline directly from   sieves[J]. Applied Clay Science, 2018, 163: 249-256.
                 syngas by dual metal oxide-zeolite (OX-ZEO) Catalysis[J]. Angewandte   [40]  HUANG Y X, MA H F, XU Z Q, et al. Role of nanosized sheet-like
                 Chemie International Edition, 2019, 58(22): 7400-7404.     SAPO-34 in bifunctional catalyst for  syngas-to-olefins  reaction[J].
            [22]  DANG S S, GAO P, LIU Z Y, et al. Role of zirconium in direct CO 2   Fuel, 2020, 273: 117771-117778.
                 hydrogenation to lower olefins on oxide/zeolite bifunctional   [41]  YANG J H, GONG K, MIAO D Y,  et al.  Enhanced aromatic
                 catalysts[J]. Journal of Catalysis, 2018, 364: 382-393.     selectivity by the sheet-like ZSM-5 in syngas conversion[J]. Journal
            [23]  DOKANIA A,  DUTTA  CHOWDHURY A, RAMIREA  A,  et al.   of Energy Chemistry, 2018, 35: 44-48.
                 Acidity  modification of ZSM-5 for enhanced production of light   [42]  DANG S S, LI S G, YANG C G, et al. Selective transformation of
                 olefins from CO 2[J]. Journal of Catalysis, 2020, 381: 347-354.     CO 2 and H 2 into lower olefins  over In 2O 3-ZnZrO x/SAPO-34
            [24]  YU X (于翔), WANG J H (王军华), ZHANG L W (张立伟), et al.   bifunctional catalysts[J]. ChemSusChem, 2019, 12: 1-11.
                 Dimethyl ether synthesis from  methanol and syngas over different   [43]  DUGKHUNTOD P, WATTANAKIT C. A comprehensive review of
                 sized HY zeolite and Cu-Mn-Zn/HY bifunctional catalyst[J]. Chinese   the applications of hierarchical zeolite nanosheets and nanoparticle
                 Journal of Catalysis (催化学报), 2010, 31(5): 591-596.     assemblies in light olefin production[J]. Catalysts, 2020, 10(2): 245-259.
            [25]  JIAO F, PAN X L, GONG K, et al. Shape-selective zeolites promote   [44]  LI X, REZAEI F, ROWNAGHI A. Methanol-to-olefin conversion on
                 ethylene formation from syngas  via a ketene intermediate[J].   3D-printed ZSM-5  monolith catalysts: Effects of  metal doping,
                 Angewandte Chemie International Edition, 2018, 57(17): 4692-4696.     mesoporosity and acid strength[J]. Microporous and  Mesoporous
            [26]  ZHOU W, KANG J C, CHENG K, et al. Direct conversion of syngas   Materials, 2019, 276: 1-12.
                 into methyl acetate, ethanol, and ethylene by relay catalysis via the   [45]  WANG Y, CHEN S L, GAO Y L, et al. Enhanced methanol to olefin
                 intermediate dimethyl ether[J]. Angewandte Chemie International   catalysis by physical mixtures of  SAPO-34 molecular sieve and
                 Edition, 2018, 57(37): 12012-12016.               MgO[J]. ACS Catalysis, 2017, 7(9): 5572-5584.
            [27]  WANG J  Y,  ZHANG A F, JIANG X,  et al. Highly selective   [46]  HUANG H  W,  WANG H R, ZHU  H,  et al.  Enhanced ethene to
                 conversion of CO 2 to lower hydrocarbons (C 2~C 4) over bifunctional   propene ratio  over  Zn-modified  SAPO-34 zeolites in methanol-to-
                 catalysts composed of In 2O 3-ZrO 2 and zeolite[J]. Journal of CO 2   olefin reaction[J]. Catalysis Science & Technology, 2019, 9(9): 2203-
                 Utilization, 2018, 27: 81-88.                     2210.
            [28]  LIU T, LU T L, YANG M M, et al. Enhanced catalytic performance   [47]  LIU R (刘蓉), WANG P F (王鹏飞), ZHA F (查飞),  et al.
                 of CuO-ZnO-Al 2O 3/SAPO-5 bifunctional catalysts  for  direct   Preparation of rare earths modified SAPO-34 and its catalysis
                 conversion of syngas to light hydrocarbons and insights into the role   performance in synthesis of light olefins from CO 2 hydrogenation[J].
                 of zeolite acidity[J]. Catalysis Letters, 2019, 149(12): 3338-3348.     Fine Chemicals (精细化工), 2016, 33(4): 413-418, 424.
            [29]  YANG X L, SU X, LIANG B L, et al. The influence of alkali-treated   [48]  PERON D V, ZHOLOBENKO V L, DE MELO J H S, et al. External
                 zeolite on the oxide-zeolite syngas conversion process[J]. Catalysis   surface phenomena in dealumination and desilication of large single
                 Science & Technology, 2018, 8(17): 4338-4348.     crystals of ZSM-5 zeolite synthesized from a sustainable source[J].
            [30]  PLANA-PALLEJA  J, ABELLO S, BERRUECO C, et al. Effect of   Microporous and Mesoporous Materials, 2019, 286: 57-64.
                 zeolite acidity and mesoporosity on the activity of Fischer-Tropsch
                 Fe/ZSM-5 bifunctional catalysts[J]. Applied Catalysis A: General,           (下转第 1614 页)
   63   64   65   66   67   68   69   70   71   72   73