Page 140 - 《精细化工》2021年第10期
P. 140
·2070· 精细化工 FINE CHEMICALS 第 38 卷
关于冬凌草多糖抗氧化活性的报道很少,但使 [6] HU H B, LIANG H P, LI H M, et al. Isolation, purification,
characterization and antioxidant activity of polysaccharides from the
用其他材料进行的类似报道较多。商龙臣等 [36] 研究 stem barks of Acanthopanax leucorrhizus[J]. Carbohydrate Polymers,
了南瓜硒多糖的活性,分析发现,南瓜硒多糖对超 2018, 196: 359-367.
[7] SONG X (宋逍), ZHAO P (赵鹏), SHEN W R (申婉容), et al. Study
氧阴离子自由基、OH 自由基的清除作用显著强于 on preparation and antioxidant activity of the seleno-polysaccharides
南瓜多糖,与样品量呈正相关;侯巍等 [37] 对玉米须 from Tussilago farfara[J]. Science and Technology of Food Industry
(食品工业科技), 2013, 34(13): 227-231.
硒多糖的抗氧化活性进行研究发现,玉米须硒多糖 [8] WANG J, ZHAO B, WANG X, et al. Synthesis of selenium-containing
对 OH 自由基的清除能力稍强于玉米须多糖,对超 polysaccharides and evaluation of antioxidant activity in vitro[J].
International Journal of Biological Macromolecules, 2012, 51(5):
氧阴离子自由基的清除能力明显强于玉米须多糖, 987-991.
当玉米须硒多糖的质量浓度为 1.0 g/L 时,对 DPPH [9] ZHANG Z H (张志红), LIU C (刘臣). Determination of selenium in
the enriched rice with O-phenylenediamine UV spectrophotometry
自由基的清除率为 94.9%,与抗坏血酸相近;REN [J]. Journal of Beijing Institute of Petro-chemical Technology (北京
等 [38] 发现,香菇多糖及硒多糖的还原能力随其浓度 石油化工学院学报), 2015, 23(3): 11-14.
[10] MAO G H (茆广华). Study on the selenium enrichment and selenium
的增加而逐渐增加,且硒多糖还原能力明显高于多 polysaccharides of grifola frondosa fruit body[D]. Zhenjiang: Jiangsu
糖,与本实验结果较为一致。但是其他多糖(青蒿 University (江苏大学), 2014.
[11] DANIEL J S. Chromatographic separation of 1-phenyl-3-methyl-5-
种子多糖 [39] 、铁线莲多糖 [40] 、西兰花多糖 [41] )与冬 pyrazolone-derivatized neutral, acidic and basic aldoses[J]. Journal of
凌草多糖、其他硒多糖(香菇多糖 [28] 、枸杞多糖 [24] 、 Chromatography A, 1994, 678(1): 17-23.
[12] WU Y, CHEN S W, ZHU S, et al. Sugar compositional determination
牡蛎多糖 [42] )与冬凌草硒多糖之间抗氧化活性能力 of polysaccharides from dunaliella salina by modified RP-HPLC
存在较大差异,原因是不同植物的多糖类型不同, method of precolumn derivatization with 1-phenyl-3-methyl-5-
pyrazolone[J]. Carbohydrate Polymers, 2010, 82(3): 629-635.
具有不同的理化性质和结构特征,因此抗氧化活性 [13] ZHANG J J, ZHANG Q B, WANG J, et al. Analysis of the
也有一定差异。 monosaccharide composition of fucoidan by precolumn derivation
HPLC[J]. Chinese Journal of Oceanology & Limnology, 2009, 27(3):
578-582.
3 结论 [14] CHEN J M (陈晋明), FENG C P (冯翠萍). Antioxidation activty of
pleurotus nebrodensis polysaccharide[J]. Food Science and Technology
(食品科技), 2015, 40(2): 239-242.
以冬凌草多糖为原料,Na 2 SeO 3 为硒化试剂,进 [15] ZHANG D Y, LUO M, WANG W, et al. Variation of active constituents
行冬凌草硒多糖的合成。硒多糖在 334 nm 处有明 and antioxidant activity in pyrola [P. incarnata Fisch.] from different
sites in northeast China[J]. Food Chemistry, 2013, 141(3): 2213-2219.
显紫外吸收峰;红外光谱分析发现,硒多糖在 1049、 [16] LI S, SHAH N P. Characterization, antioxidative and bifidogenic
–1
880 cm 处出现了新的吸收峰,证明产物结构中含 effects of polysaccharides from Pleurotus eryngii after heat treatments[J].
Food Chemistry, 2016, 197(A): 240-249.
有 O—Se—O、Se==O 键,均表明冬凌草多糖已被成 [17] SONG J M (宋佳敏), WANG H F (王鸿飞), SUN M (孙朦), et al.
功硒化修饰。热重分析发现,亚硒酸根的引入使得 Optimization of extraction and antioxidant activity of polysaccharides
from cordyceps cicadae by response surface methodology[J]. Food
多糖稳定性下降,分解温度降低。体外抗氧化实验 Science (食品科学), 2018, 39(4): 275-281.
表明,冬凌草硒多糖对 DPPH 自由基、ABTS 自由 [18] ZHU L (朱良), ZHANG J P (张杰平), WANG Y F (王一飞). Study
on antioxidant activity of grateloupia filicina polysaccharide[J]. Food
基和 OH 自由基的清除能力及还原能力均强于冬凌 Science (食品科学), 2008, 29(3): 453-456.
草多糖。以上结果为冬凌草硒多糖的研究提供了一 [19] WEI D, CHEN T, YAN M, et al. Synthesis, characterization, antioxidant
activity and neuroprotective effects of selenium polysaccharide from
定的基础,并为其作为新型保健功能的补硒试剂提 Radix hedysari[J]. Carbohydrate Polymers, 2015, 125: 161-168.
供了一定的技术参考。 [20] WANG Z Y (王占一), LI Z W (李卓瓦), BI H D (毕海丹), et al.
Optimization of synthesis technology of selenium polysaccharide
ester from pomegranate seeds and its anti-lipid oxidation ability[J].
参考文献: Science and Technology of Food Industry (食品工业科技), 2019,
[1] XU W T, ZHANG F F, LUO Y B, et al. Antioxidant activity of a 40(12): 149-155, 162.
water-soluble polysaccharide purified from Pteridium aquilinum[J]. [21] XIE J H, LIU X, SHEN M Y, et al. Purification, physicochemical
Carbohydrate Research, 2009, 344(2): 217-222. characterisation and anticancer activity of a polysaccharide from
[2] FAN J, FENG H B, YU Y, et al. Antioxidant activities of the Cyclocarya paliurus leaves[J]. Food Chemistry, 2013, 136(3/4):
polysaccharides of Chuanminshen violaceum[J]. Carbohydrate 1453-1460.
Polymers, 2017, 157: 629-636. [22] XU Y, ZHANG L, YANG Y, et al. Optimization of ultrasound-assisted
[3] WANG Y, CHEN J, ZHANG D, et al. Tumoricidal effects of a compound enzymatic extraction and characterization of polysaccharides
selenium (Se)-polysaccharide from Ziyang green tea on human from blackcurrant[J]. Carbohydrate Polymers, 2015, 117: 895-902.
osteosarcoma U-2 OS cells[J]. Carbohydrate Polymers, 2013, 98(1): [23] SONG Y, DU B J, ZHOU T, et al. Optimization of extraction process
1186-1190. by response surface methodology and preliminary structural analysis
[4] ZHANG Y, ZHANG Z, LIU H, et al. Physicochemical characterization of polysaccharides from defatted peanut (Arachis hypogaea) cakes[J].
and antitumor activity in vitro of a selenium polysaccharide from Carbohydrate Research, 2011, 346(2): 305-310.
Pleurotus ostreatus[J]. International Journal of Biological [24] ZHANG C ( 张超 ). Study on preparation, antioxidant and
Macromolecules, 2020, 165: 2934-2946. hepatoprotective effects of selenized lycium barbarum
[5] MIERSCH J, TSCHIMEDBALSHIRA M, BÄRLOCHER F, et al. polysaccharide[D]. Hohhot: Inner Mongolia Agricultural University
Heavy metals and thiol compounds in Mucor racemosus and (内蒙古农业大学), 2019.
Articulospora tetracladia[J]. Mycological Research, 2001, 105(7): [25] WANG Z Y (王占一), DAI B (戴博), ZHANG L H (张立华), et al.
883-889. Optimized preparation and structural analysis of polysaccharide