Page 71 - 《精细化工》2021年第11期
P. 71

第 11 期                       郑永杰,等: TiO 2 /MOFs 的制备及污染物降解现状                             ·2217·


            应底物的接触面积,暴露出更多的催化位点,此外,                                2020, 37(11): 2255-2261.
            良好的导电性可以提高异质结中电荷的分离效率,                             [11]  ALLUQMANI S M, LOULOU M, OUERFELLI J, et al. Elaboration
                                                                   of TiO 2/carbon  of oil fly ash nanocomposite as an eco-friendly
            也可以通过对 MOFs 有机配体进行改性来延长材料                              photocatalytic thin-film  material[J].  Ceramics International, 2021,
            共轭连接物长度,增强光响应范围;三是在 TiO 2 与                            47(10): 13544-13551.
                                                               [12]  HUANG X M, RUAN L F, JIANG R  Y,  et al. The direction  of
            MOFs 的接触界面进行处理,通过某特定方法使
                                                                   photogenerated charge carrier transfer in TiO 2-Fe 2O 3 and
            MOFs 的有机配体与 TiO 2 连接或加入电子转移介体                          TiO 2-CuO[J]. Chemistry Letters, 2018, 47(4): 548-550.
            来加快电荷转移。对有机污染物降解研究中,可以探                            [13]  ELSEMAN A M, ZAKI A H, SHALAN A E, et al. TiO 2 nanotubes:
                                                                   An advanced electron transport material for enhancing the efficiency
            讨污染物的电荷特点、pH 对 TiO 2/MOFs 氧化还原电位                       and stability of perovskite solar cells[J]. Industrial & Engineering
            的影响。并通过使用密度泛函理论计算 TiO 2 /MOFs 的                        Chemistry Research, 2020, 59(41): 18549-18557.
            结构特征与电荷特性来对机理进行阐述。                                 [14]  RIAZ S, PARK S J. An overview of TiO 2-based photocatalytic
                                                                   membrane reactors for water and wastewater treatments[J]. Journal
                 目前,异质结结构的构建主要局限于有限的经                              of Industrial and Engineering Chemistry, 2020, 84: 23-41.
            典 MOFs 半导体,且均为Ⅱ型异质结。后续科研人                          [15]  XIE W K (谢汶珂), CHEN J (陈洁). Research progress on the
                                                                   application of metal-organic frameworks for photocatalytic reduction
            员可以寻找纳米级 MOFs 材料,更有利于实现与
                                                                   of CO 2[J]. Fine Chemicals (精细化工), 2020, 37(12): 2386-2397.
            TiO 2 的紧密接触。此外,异质结中光生载流子的传                         [16]  WANG C C, WANG X, LIU W. The synthesis strategies and
            输路径还需要进一步系统化和深入研究。深入了解                                 photocatalytic performances of TiO 2/MOFs composites: A state-of-the-art
                                                                   review[J].  Chemical  Engineering  Journal,  2019,  391:
            电荷转移机理是高活性 TiO 2 /MOFs 工业生产的基                          123601-123693.
            础。虽然带隙计算和光电测试间接证明了光生电子                             [17]  SUN T C, HAO S E, FAN  R  Q,  et al. Hydrophobicity-adjustable
            和空穴转移的存在,但没有直接证据证明真正的传                                 MOF constructs superhydrophobic MOF-rGO aerogel for efficient
                                                                   oil-water separation[J]. ACS Applied Materials & Interfaces, 2020,
            输路径。这一问题对于确定形成了哪些类型的异质                                 12(50): 56435-56444.
            结结构以及确定光催化机理具有重要意义。                                [18]  ZHENG H L, YI H, DAI H,  et al. Fluoro-coumarin silicon
                                                                   phthalocyanine sensitized integrated electrochemiluminescence bioprobe
            参考文献:                                                  constructed on  TiO 2  MOFs  for the sensing of deoxynivalenol[J].
                                                                   Sensors and Actuators B: Chemical, 2018, 269: 27-35.
            [1]   LI H R, WU S H, DU C,  et al. Preparation, performances, and   [19]  LI Z X, XING  X F, CHU J M,  et al. MOF  confined in
                 mechanisms of microbial flocculants for wastewater treatment[J].   macroporous-mesoporous-TiO 2 for  light-boosting electrocatalytical
                 International Journal of Environmental Research and Public Health,   oxygen production[J]. Materials Today Energy, 2019, 13: 125-133.
                 2020, 17(4): 1360-1380.                       [20]  XUE X X, WENG Y J, YANG S C, et al. Effect of Cu-based metal
            [2]   ENAIME  G,  BACAOUI A, YAACOUBI A,  et al. Biochar for   organic  framework  (Cu-MOF) loaded with TiO 2 on the photocatalytic
                 wastewater treatment—Conversion technologies and applications[J].   degradation of rhodamine  B dye[J].  Environmental Science  and
                 Applied Sciences, 2020, 10(10): 3492-3521.        Pollution Research, 2021, 28(13): 15883-15889.
            [3]   RIAZ S, PARK S J. An overview of TiO 2-based photocatalytic   [21]  MANGAL S, PRIYA S S, LEWIS N L,  et al. Synthesis and
                 membrane reactors for water and wastewater treatments[J]. Journal   characterization of metal organic framework-based photocatalyst and
                 of Industrial and Engineering Chemistry, 2020, 84: 23-41.
                                                                   membrane for carbon dioxide conversion[J]. Materials Today:
            [4]   ZHANG P, LU X F, LUAN D Y, et al. Fabrication of heterostructured
                                                                   Proceedings, 2018, 5(8): 16378-16389.
                 Fe 2TiO 5-TiO 2  nanocages with enhanced photoelectrochemical
                                                               [22] ZHOU Y (周易), OUYANG W L (欧阳威龙), WANG Y J (王岳军),
                 performance for solar energy conversion[J]. Angewandte Chemie,
                                                                   et al. Core-shell structured NH 2-UiO-66@TiO 2 photocatalyst for the
                 2020, 132(21): 8205-8209.                         degradation of toluene under visible light irradiation[J]. Acta
            [5]   LIU Y P, LI Y H, LI X Y, et al. Regulating electron-hole separation to   Physico-Chimica Sinica (物理化学学报), 2021, 37(8): 1-10.
                 promote photocatalytic H 2 evolution activity of nanoconfined   [23]  ZENG X, HUANG L Q, WANG C N, et al. Sonocrystallization of
                 Ru/MXene/TiO 2 catalysts[J]. ACS Nano, 2020, 14(10): 14181-14189.     ZIF-8 on electrostatic spinning TiO 2 nanofibers surface  with
            [6]   XUN S H, TI Q T, JIAO Z X, et al. Dispersing TiO 2 nanoparticles on   enhanced photocatalysis property through synergistic effect[J]. ACS
                 graphite carbon for an enhanced catalytic oxidative desulfurization   Applied Materials & Interfaces, 2016, 8(31): 20274-20282.
                 performance[J]. Industrial & Engineering Chemistry Research, 2020,   [24]  XU H (徐行), DU H L (杜慧玲), LI Z (李卓), et al. Photocatalytic
                 59(41): 18471-18479.                              degradation characteristics of ZIF-8 synergistically enhanced with
            [7]   HUANG F P (黄凤萍), LIU B X (刘博学), CUI M L (崔梦丽), et al.   TiO 2[J]. Bulletin of the Chinese Ceramic Society (硅酸盐通报),
                 Photocatalytic performance of composite nanorod Ag 3PO 4/ZnO   2021, 40(3): 1029-1037.
                 composite materials[J]. Fine Chemicals (精细化工), 2020, 37(1):   [25]  LIU X, DANG R, DONG W J, et al. A sandwich-like heterostructure
                 156-161.                                          of TiO 2  nanosheets with MIL-100(Fe): A platform for efficient
            [8]   FU B, WU Z J, CAO S, et al. Effect of aspect ratios of rutile TiO 2   visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental,
                 nanorods on overall photocatalytic water splitting performance[J].   2017, 209: 506-513.
                 Nanoscale, 2020, 12(8): 4895-4902.            [26]  ZHAI L  Z, QIAN Y H, WANG Y  X,  et al.  In-situ  formation of
            [9]   SONG S, QU J F, HAN P J, et al. Visible-light-driven amino acids   micropore-rich  titanium dioxide from  metal-organic framework
                 production from  biomass-based feedstocks over ultrathin CdS   templates[J]. ACS  Applied Materials & Interfaces, 2018, 10(43):
                 nanosheets[J]. Nature Communications, 2020, 11(1): 1-10.     36933-36940.
            [10]  MA  L B (马立标), ZHANG  B (张宾), LIU R Z (柳荣展),  et al.   [27]  LIAO X Y, ZHANG M,  WANG  X Y,  et al. Vacuum  degassed
                 Preparation and photocatalytic performance of potassium doped   treatment for fabricating quasi-MIL-125(Ti) with enhanced catalytic
                 g-C 3N 4 sludge-based composite[J]. Fine Chemicals (精细化工),   oxidative desulfurization activity[J]. Microporous and Mesoporous
   66   67   68   69   70   71   72   73   74   75   76