Page 71 - 《精细化工》2021年第11期
P. 71
第 11 期 郑永杰,等: TiO 2 /MOFs 的制备及污染物降解现状 ·2217·
应底物的接触面积,暴露出更多的催化位点,此外, 2020, 37(11): 2255-2261.
良好的导电性可以提高异质结中电荷的分离效率, [11] ALLUQMANI S M, LOULOU M, OUERFELLI J, et al. Elaboration
of TiO 2/carbon of oil fly ash nanocomposite as an eco-friendly
也可以通过对 MOFs 有机配体进行改性来延长材料 photocatalytic thin-film material[J]. Ceramics International, 2021,
共轭连接物长度,增强光响应范围;三是在 TiO 2 与 47(10): 13544-13551.
[12] HUANG X M, RUAN L F, JIANG R Y, et al. The direction of
MOFs 的接触界面进行处理,通过某特定方法使
photogenerated charge carrier transfer in TiO 2-Fe 2O 3 and
MOFs 的有机配体与 TiO 2 连接或加入电子转移介体 TiO 2-CuO[J]. Chemistry Letters, 2018, 47(4): 548-550.
来加快电荷转移。对有机污染物降解研究中,可以探 [13] ELSEMAN A M, ZAKI A H, SHALAN A E, et al. TiO 2 nanotubes:
An advanced electron transport material for enhancing the efficiency
讨污染物的电荷特点、pH 对 TiO 2/MOFs 氧化还原电位 and stability of perovskite solar cells[J]. Industrial & Engineering
的影响。并通过使用密度泛函理论计算 TiO 2 /MOFs 的 Chemistry Research, 2020, 59(41): 18549-18557.
结构特征与电荷特性来对机理进行阐述。 [14] RIAZ S, PARK S J. An overview of TiO 2-based photocatalytic
membrane reactors for water and wastewater treatments[J]. Journal
目前,异质结结构的构建主要局限于有限的经 of Industrial and Engineering Chemistry, 2020, 84: 23-41.
典 MOFs 半导体,且均为Ⅱ型异质结。后续科研人 [15] XIE W K (谢汶珂), CHEN J (陈洁). Research progress on the
application of metal-organic frameworks for photocatalytic reduction
员可以寻找纳米级 MOFs 材料,更有利于实现与
of CO 2[J]. Fine Chemicals (精细化工), 2020, 37(12): 2386-2397.
TiO 2 的紧密接触。此外,异质结中光生载流子的传 [16] WANG C C, WANG X, LIU W. The synthesis strategies and
输路径还需要进一步系统化和深入研究。深入了解 photocatalytic performances of TiO 2/MOFs composites: A state-of-the-art
review[J]. Chemical Engineering Journal, 2019, 391:
电荷转移机理是高活性 TiO 2 /MOFs 工业生产的基 123601-123693.
础。虽然带隙计算和光电测试间接证明了光生电子 [17] SUN T C, HAO S E, FAN R Q, et al. Hydrophobicity-adjustable
和空穴转移的存在,但没有直接证据证明真正的传 MOF constructs superhydrophobic MOF-rGO aerogel for efficient
oil-water separation[J]. ACS Applied Materials & Interfaces, 2020,
输路径。这一问题对于确定形成了哪些类型的异质 12(50): 56435-56444.
结结构以及确定光催化机理具有重要意义。 [18] ZHENG H L, YI H, DAI H, et al. Fluoro-coumarin silicon
phthalocyanine sensitized integrated electrochemiluminescence bioprobe
参考文献: constructed on TiO 2 MOFs for the sensing of deoxynivalenol[J].
Sensors and Actuators B: Chemical, 2018, 269: 27-35.
[1] LI H R, WU S H, DU C, et al. Preparation, performances, and [19] LI Z X, XING X F, CHU J M, et al. MOF confined in
mechanisms of microbial flocculants for wastewater treatment[J]. macroporous-mesoporous-TiO 2 for light-boosting electrocatalytical
International Journal of Environmental Research and Public Health, oxygen production[J]. Materials Today Energy, 2019, 13: 125-133.
2020, 17(4): 1360-1380. [20] XUE X X, WENG Y J, YANG S C, et al. Effect of Cu-based metal
[2] ENAIME G, BACAOUI A, YAACOUBI A, et al. Biochar for organic framework (Cu-MOF) loaded with TiO 2 on the photocatalytic
wastewater treatment—Conversion technologies and applications[J]. degradation of rhodamine B dye[J]. Environmental Science and
Applied Sciences, 2020, 10(10): 3492-3521. Pollution Research, 2021, 28(13): 15883-15889.
[3] RIAZ S, PARK S J. An overview of TiO 2-based photocatalytic [21] MANGAL S, PRIYA S S, LEWIS N L, et al. Synthesis and
membrane reactors for water and wastewater treatments[J]. Journal characterization of metal organic framework-based photocatalyst and
of Industrial and Engineering Chemistry, 2020, 84: 23-41.
membrane for carbon dioxide conversion[J]. Materials Today:
[4] ZHANG P, LU X F, LUAN D Y, et al. Fabrication of heterostructured
Proceedings, 2018, 5(8): 16378-16389.
Fe 2TiO 5-TiO 2 nanocages with enhanced photoelectrochemical
[22] ZHOU Y (周易), OUYANG W L (欧阳威龙), WANG Y J (王岳军),
performance for solar energy conversion[J]. Angewandte Chemie,
et al. Core-shell structured NH 2-UiO-66@TiO 2 photocatalyst for the
2020, 132(21): 8205-8209. degradation of toluene under visible light irradiation[J]. Acta
[5] LIU Y P, LI Y H, LI X Y, et al. Regulating electron-hole separation to Physico-Chimica Sinica (物理化学学报), 2021, 37(8): 1-10.
promote photocatalytic H 2 evolution activity of nanoconfined [23] ZENG X, HUANG L Q, WANG C N, et al. Sonocrystallization of
Ru/MXene/TiO 2 catalysts[J]. ACS Nano, 2020, 14(10): 14181-14189. ZIF-8 on electrostatic spinning TiO 2 nanofibers surface with
[6] XUN S H, TI Q T, JIAO Z X, et al. Dispersing TiO 2 nanoparticles on enhanced photocatalysis property through synergistic effect[J]. ACS
graphite carbon for an enhanced catalytic oxidative desulfurization Applied Materials & Interfaces, 2016, 8(31): 20274-20282.
performance[J]. Industrial & Engineering Chemistry Research, 2020, [24] XU H (徐行), DU H L (杜慧玲), LI Z (李卓), et al. Photocatalytic
59(41): 18471-18479. degradation characteristics of ZIF-8 synergistically enhanced with
[7] HUANG F P (黄凤萍), LIU B X (刘博学), CUI M L (崔梦丽), et al. TiO 2[J]. Bulletin of the Chinese Ceramic Society (硅酸盐通报),
Photocatalytic performance of composite nanorod Ag 3PO 4/ZnO 2021, 40(3): 1029-1037.
composite materials[J]. Fine Chemicals (精细化工), 2020, 37(1): [25] LIU X, DANG R, DONG W J, et al. A sandwich-like heterostructure
156-161. of TiO 2 nanosheets with MIL-100(Fe): A platform for efficient
[8] FU B, WU Z J, CAO S, et al. Effect of aspect ratios of rutile TiO 2 visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental,
nanorods on overall photocatalytic water splitting performance[J]. 2017, 209: 506-513.
Nanoscale, 2020, 12(8): 4895-4902. [26] ZHAI L Z, QIAN Y H, WANG Y X, et al. In-situ formation of
[9] SONG S, QU J F, HAN P J, et al. Visible-light-driven amino acids micropore-rich titanium dioxide from metal-organic framework
production from biomass-based feedstocks over ultrathin CdS templates[J]. ACS Applied Materials & Interfaces, 2018, 10(43):
nanosheets[J]. Nature Communications, 2020, 11(1): 1-10. 36933-36940.
[10] MA L B (马立标), ZHANG B (张宾), LIU R Z (柳荣展), et al. [27] LIAO X Y, ZHANG M, WANG X Y, et al. Vacuum degassed
Preparation and photocatalytic performance of potassium doped treatment for fabricating quasi-MIL-125(Ti) with enhanced catalytic
g-C 3N 4 sludge-based composite[J]. Fine Chemicals (精细化工), oxidative desulfurization activity[J]. Microporous and Mesoporous