Page 72 - 《精细化工》2021年第11期
P. 72
·2218· 精细化工 FINE CHEMICALS 第 38 卷
Materials, 2020, 308. DOI: 10.1016/j.micromeso.2020.110529. [40] LI Y Y, JIANG J, FANG Y, et al. TiO 2 nanoparticles anchored onto
[28] WANG X, SUN M. Metal-organic framework (MOF) based materials the metal-organic framework NH 2-MIL-88B(Fe) as an adsorptive
for electrochemical hydrogen production: A mini review[J]. International photocatalyst with enhanced fenton-like degradation of organic
Journal of Electrochemical Science, 2021, 16(5). DOI: 10.20964/ pollutants under visible light irradiation[J]. ACS Sustainable
2021.05.42. Chemistry & Engineering, 2018, 6(12): 16186-16197.
[29] WANG Q, GAO Q Y, AL-ENIZI A M, et al. Recent advances in [41] LI X Y, PI Y H, XIA Q B, et al. TiO 2 encapsulated in
MOF-based photocatalysis: Environmental remediation under visible salicylaldehyde-NH 2-MIL-101(Cr) for enhanced visible light-driven
light[J]. Inorganic Chemistry Frontiers, 2020, 7(2): 300-339. photodegradation of MB[J]. Applied Catalysis B: Environmental,
[30] AROTIBA O A, ORIMOLADE B O, KOIKO B A. Visible light-driven 2016, 191: 192-201.
photoelectrocatalytic semiconductor heterojunction anodes for water [42] HE L, DONG Y N, ZHENG Y N, et al. A novel magnetic
treatment applications[J]. Current Opinion in Electrochemistry, 2020, MIL-101(Fe)/TiO 2 composite for photo degradation of tetracycline
22: 25-34. under solar light[J]. Journal of Hazardous Materials, 2019, 361:
[31] WANG L, JIN P X, DUAN S H, et al. In-situ incorporation of copper 85-94.
(Ⅱ) porphyrin functionalized zirconium MOF and TiO 2 for efficient [43] HE X, NGUYEN V, JIANG Z, et al. Highly-oriented one-dimensional
photocatalytic CO 2 reduction[J]. Science Bulletin, 2019, 64(13): MOF-semiconductor nanoarrays for efficient photodegradation of
926-933. antibiotics[J]. Catalysis Science & Technology, 2018, 8(8): 2117-2123.
[32] SUN L M, YUAN Y S, WANG F, et al. Selective wet-chemical [44] JAFAR A, MAEDE Y, SAHAR S, et al. Synthesis of porous
etching to create TiO 2@MOF frame heterostructure for efficient TiO 2/ZrO 2 photocatalyst derived from zirconium metal organic
photocatalytic hydrogen evolution[J]. Nano Energy, 2020, 74: framework for degradation of organic pollutants under visible light
104909-104917. irradiation[J]. Journal of Environmental Chemical Engineering, 2019,
[33] JI W Y, KIM D H, KIM J H, et al. NH 2-MIL-125(Ti)/TiO 2 nanorod 7(3): 103096-103119.
heterojunction photoanodes for efficient photoelectrochemical water [45] WU J F, FANG X X, ZHU Y Z, et al. Well-designed TiO 2@UiO-66-NH 2
splitting[J]. Applied Catalysis B: Environmental, 2018, 244: 511-518. nanocomposite with superior photocatalytic activity for tetracycline
[34] BARBARA D C, MATTEO R, MARIANNA B, et al. Step-by-step under restricted space[J]. Energy & Fuels, 2020, 34(10): 12911-12917.
growth of HKUST-1 on functionalized TiO 2 surface: An efficient [46] CHUI S Y, LO M F, CHARMANT J, et al. A chemically functionalizable
material for CO 2 capture and solar photoreduction[J]. Catalysts, nanoporous material [Cu 3(TMA) 2(H 2O) 3] n[J]. Science, 1999, 283(5405):
2018, 8(9): 353-373. 1148-1150.
[35] YI Y X, YANG B S, LIU B. MOF assisted synthesis of TiO 2/Au/Fe 2O 3 [47] LIU J, LI X M, HE J, et al. Combining the photocatalysis and
hybrids with enhanced photocatalytic hydrogen production and absorption properties of core-shell Cu-BTC@TiO 2 microspheres:
simultaneous removal of toxic phenolic compounds[J]. Journal of Highly efficient desulfurization of thiophenic compounds from
Molecular Liquids, 2020, 322: 114815-114854. fuel[J]. Materials, 2018, 11(11): 2209-2227.
[36] TANG Y, LI X L, ZHANG H, et al. Cobalt-based ZIF coordinated [48] HE X, GAN Z R, FISENKO S, et al. Rapid formation of
hybrids with defective TiO 2–x for boosting visible light-driven metal-organic frameworks (MOFs) based nanocomposites in
photo-Fenton-like degradation of bisphenol A[J]. Chemosphere, microdroplets and their applications for CO 2 photoreduction[J]. ACS
2020, 259: 127431-127462. Appl Mater Interfaces, 2017, 9(11): 9688-9698.
[37] JIA M Y, YANG Z H, XU H Y, et al. Integrating N and F co-doped [49] QIN J X, WANG J, YANG J J, et al. Metal organic framework
TiO 2 nanotubes with ZIF-8 as photoelectrode for enhanced derivative-TiO 2 composite as efficient and durable photocatalyst for
photo-electrocatalytic degradation of sulfamethazine[J]. Chemical the degradation of toluene[J]. Applied Catalysis B: Environmental,
Engineering Journal, 2020, 388. DOI: 0.1016/j.cej.2020.124388. 2020, 267: 118667-118677.
[38] LI R B, CHEN Z M, CAI M X, et al. Improvement of sulfamethazine [50] PATRYCJA P, WOJCIECH L, TOMASZ K, et al. Visible-light-driven
photodegradation by Fe ( Ⅲ ) assisted MIL-53(Fe)/percarbonate lanthanide-organic-frameworks modified TiO 2 photocatalysts utilizing
system[J]. Applied Surface Science, 2018, 457: 726-734. up-conversion effect[J]. Applied Catalysis B: Environmental, 2021, (1):
[39] TANG J T, WANG J L. MOF-derived three-dimensional flower-like 120056-120071.
FeCu@C composite as an efficient Fenton-like catalyst for [51] ZHANG W Y, YANG S L, LI J, et al. Visible-to-ultraviolet upconvertion:
sulfamethazine degradation[J]. Chemical Engineering Journal, 2019, Energy transfer, material matrix, and synthesis strategies[J]. Applied
375: 122007-122018. Catalysis B: Environmental, 2017, 206: 89-103.