Page 72 - 《精细化工》2021年第11期
P. 72

·2218·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 Materials, 2020, 308. DOI: 10.1016/j.micromeso.2020.110529.     [40]  LI Y Y, JIANG J, FANG Y, et al. TiO 2 nanoparticles anchored onto
            [28]  WANG X, SUN M. Metal-organic framework (MOF) based materials   the metal-organic framework NH 2-MIL-88B(Fe) as an adsorptive
                 for electrochemical hydrogen production: A mini review[J]. International   photocatalyst with enhanced fenton-like degradation of organic
                 Journal of Electrochemical Science, 2021, 16(5). DOI:  10.20964/   pollutants under visible light irradiation[J]. ACS Sustainable
                 2021.05.42.                                       Chemistry & Engineering, 2018, 6(12): 16186-16197.
            [29]  WANG Q, GAO  Q Y, AL-ENIZI A  M,  et al. Recent advances  in   [41]  LI X Y, PI Y  H, XIA Q  B,  et al. TiO 2 encapsulated in
                 MOF-based photocatalysis: Environmental remediation under visible   salicylaldehyde-NH 2-MIL-101(Cr) for enhanced visible light-driven
                 light[J]. Inorganic Chemistry Frontiers, 2020, 7(2): 300-339.     photodegradation of MB[J].  Applied Catalysis B: Environmental,
            [30]  AROTIBA O A, ORIMOLADE B O, KOIKO B A. Visible light-driven   2016, 191: 192-201.
                 photoelectrocatalytic semiconductor heterojunction anodes for water   [42]  HE L,  DONG Y N, ZHENG Y  N,  et al. A novel magnetic
                 treatment applications[J]. Current Opinion in Electrochemistry, 2020,   MIL-101(Fe)/TiO 2  composite for photo degradation of tetracycline
                 22: 25-34.                                        under solar light[J]. Journal of Hazardous Materials, 2019, 361:
            [31]  WANG L, JIN P X, DUAN S H, et al. In-situ incorporation of copper   85-94.
                 (Ⅱ) porphyrin functionalized zirconium MOF and TiO 2 for efficient   [43]  HE X, NGUYEN V, JIANG Z, et al. Highly-oriented one-dimensional
                 photocatalytic CO 2 reduction[J]. Science Bulletin, 2019, 64(13):   MOF-semiconductor nanoarrays for efficient photodegradation of
                 926-933.                                          antibiotics[J]. Catalysis Science & Technology, 2018, 8(8): 2117-2123.
            [32]  SUN L M, YUAN Y S, WANG F,  et al. Selective wet-chemical   [44]  JAFAR  A, MAEDE  Y, SAHAR S,  et al. Synthesis of porous
                 etching to create  TiO 2@MOF frame heterostructure for efficient   TiO 2/ZrO 2 photocatalyst derived from zirconium  metal organic
                 photocatalytic hydrogen evolution[J]. Nano Energy, 2020, 74:   framework for degradation of organic pollutants under visible light
                 104909-104917.                                    irradiation[J]. Journal of Environmental Chemical Engineering, 2019,
            [33]  JI W Y, KIM D H, KIM J H, et al. NH 2-MIL-125(Ti)/TiO 2 nanorod   7(3): 103096-103119.
                 heterojunction photoanodes for efficient photoelectrochemical water   [45]  WU J F, FANG X X, ZHU Y Z, et al. Well-designed TiO 2@UiO-66-NH 2
                 splitting[J]. Applied Catalysis B: Environmental, 2018, 244: 511-518.     nanocomposite with superior photocatalytic activity for tetracycline
            [34]  BARBARA D C, MATTEO R, MARIANNA B, et al. Step-by-step   under restricted space[J]. Energy & Fuels, 2020, 34(10): 12911-12917.
                 growth of HKUST-1 on functionalized TiO 2 surface: An efficient   [46]  CHUI S Y, LO M F, CHARMANT J, et al. A chemically functionalizable
                 material for CO 2  capture and solar  photoreduction[J]. Catalysts,   nanoporous material [Cu 3(TMA) 2(H 2O) 3] n[J]. Science, 1999, 283(5405):
                 2018, 8(9): 353-373.                              1148-1150.
            [35]  YI Y X, YANG B S, LIU B. MOF assisted synthesis of TiO 2/Au/Fe 2O 3   [47]  LIU  J, LI  X M, HE  J,  et al.  Combining the photocatalysis and
                 hybrids with enhanced photocatalytic hydrogen production and   absorption  properties of core-shell Cu-BTC@TiO 2 microspheres:
                 simultaneous removal of toxic phenolic compounds[J].  Journal of   Highly efficient  desulfurization of thiophenic compounds from
                 Molecular Liquids, 2020, 322: 114815-114854.      fuel[J]. Materials, 2018, 11(11): 2209-2227.
            [36]  TANG Y, LI X L, ZHANG H, et al. Cobalt-based ZIF coordinated   [48]  HE X,  GAN Z  R, FISENKO S,  et al. Rapid formation of
                 hybrids with defective TiO 2–x  for boosting visible  light-driven   metal-organic frameworks (MOFs) based nanocomposites in
                 photo-Fenton-like degradation of bisphenol  A[J].  Chemosphere,   microdroplets and their applications for CO 2 photoreduction[J]. ACS
                 2020, 259: 127431-127462.                         Appl Mater Interfaces, 2017, 9(11): 9688-9698.
            [37]  JIA M Y, YANG Z H, XU H Y, et al. Integrating N and F co-doped   [49]  QIN J X, WANG  J, YANG J J,  et al. Metal organic framework
                 TiO 2 nanotubes  with ZIF-8 as photoelectrode for enhanced   derivative-TiO 2 composite as efficient and durable photocatalyst for
                 photo-electrocatalytic degradation of  sulfamethazine[J].  Chemical   the degradation  of  toluene[J]. Applied Catalysis B: Environmental,
                 Engineering Journal, 2020, 388. DOI: 0.1016/j.cej.2020.124388.     2020, 267: 118667-118677.
            [38]  LI R B, CHEN Z M, CAI M X, et al. Improvement of sulfamethazine   [50]  PATRYCJA P,  WOJCIECH L, TOMASZ K,  et al. Visible-light-driven
                 photodegradation  by Fe ( Ⅲ ) assisted MIL-53(Fe)/percarbonate   lanthanide-organic-frameworks modified  TiO 2 photocatalysts utilizing
                 system[J]. Applied Surface Science, 2018, 457: 726-734.     up-conversion effect[J]. Applied Catalysis B: Environmental, 2021, (1):
            [39]  TANG J T, WANG J L. MOF-derived three-dimensional flower-like   120056-120071.
                 FeCu@C composite as  an efficient Fenton-like catalyst for   [51]  ZHANG W Y, YANG S L, LI J, et al. Visible-to-ultraviolet upconvertion:
                 sulfamethazine degradation[J]. Chemical Engineering Journal, 2019,   Energy transfer, material matrix, and synthesis strategies[J]. Applied
                 375: 122007-122018.                               Catalysis B: Environmental, 2017, 206: 89-103.
   67   68   69   70   71   72   73   74   75   76   77