Page 79 - 《精细化工》2020年第2期
P. 79

第 2 期                       吴   琼,等:  蔗糖酯在药物递送系统的应用研究进展                                  ·281·


                 of drug nanoparticles by ternary cogrinding with methacrylic copolymer   [48]  AHSAN F, ARNOLD J J, MEEZAN E,  et al. Sucrose cocoate,  a
                 and sucrose fatty acid ester[J]. Advanced Powder Technology, 2013,   component of cosmetic preparations, enhances nasal  and ocular
                 24(1): 246-251.                                   peptide absorption[J]. International Journal of Pharmaceutics, 2003,
            [40]  CSIZMAZIA E, EROS G, BERKESI O, et al. Ibuprofen penetration   251(1/2): 195-203.
                 enhance by sucrose ester examined by ATR-FTIR  in vivo[J].   [49]  RUBA B, IFTIKHAR  K,  TOURAJ E,  et al. Surfactant effects on
                 Pharmaceutical Development & Technology, 2012, 17(1): 125-128.   lipid-based vesicles properties[J]. Journal of Pharmaceutical
            [41] TODOSIJEVIĆ M N, BREZESINSKI G, SAVIĆ S D, et al. Sucrose   Sciences, 2018, 107(5): 1237-1246.
                 esters as biocompatible surfactants for penetration enhancement: An   [50]  YOUAN B B, HUSSAIN A, NGUYEN N T,  et al. Evaluation  of
                 insight into the mechanism of penetration enhancement studied using   sucrose esters as alternative surfactants in microencapsulation  of
                 stratum corneum model  lipids and Langmuir monolayers[J]. European   proteins by the solvent evaporation method[J]. American Association
                 Journal of Pharmaceutical Sciences, 2017, 99: 161-172.   of Pharmaceutical Scientists, 2003, 5(2): 123-131.
            [42]  VALDÉS K, MORILLA M J, ROMERO E, et al. Physicochemical   [51]  ZHAO Y N, ZHU J, ZHOU H J, et al. Sucrose ester based cationic
                 characterization and cytotoxic studies of nonionic surfactant vesicles   liposomes as effective non-viral gene  vectors for gene delivery[J].
                 using  sucrose esters as oral delivery systems[J]. Colloids and   Colloids and Surfaces B: Biointerfaces, 2016, 145: 454-461.
                 Surfaces B: Biointerfaces, 2014, 117: 1-6.    [52]  ZHAO Y N, LIU A, DU Y Y, et al. Effects of sucrose ester structures
            [43]  OKAMOTO H, SAKAI T, DANJO  K. Effect of sucrose fatty acid   on liposome-mediated gene delivery[J].  Acta Biomaterialia, 2018,
                 esters on transdermal permeation of lidocaine and ketoprofen[J].   72: 278-286.
                 Biological & Pharmaceutical Bulletin, 2005, 28(9): 1689-1694.   [53]  GUAN  Y,  CHEN  H Q, ZHONG Q.  Nanoencapsulation  of caffeic
            [44]  CÁZARES-DELGADILLO J, NAIK  A, KALIA  Y N,  et al. Skin   acid phenethyl ester in sucrose fatty acid esters to improve activities
                 permeation enhancement by sucrose esters: A pH-dependent   against cancer cells[J]. Journal of Food Engineering, 2019, 246: 125-133.
                 phenomenon[J]. International Journal of Pharmaceutics, 2005, 297(1/2):   [54]  EL-ROKH A R, NEGM A, EL-SHAMY M, et al. Sucrose diester of
                 204-212.                                          aryldihydronaphthalene-type lignans from  Echium angustifolium
            [45]  LERK P C, SUCKER  H.  Application of sucrose laurate,  a new   Mill. and their antitumor activity[J]. Phytochemistry, 2018, 149: 155-160.
                 pharmaceutical excipient, in peroral formulations of cyclosporin A[J].   [55]  ARICA Y B, BENOIT J P, LAMPRECHT A. Paclitaxel-loaded lipid
                 International Journal of Pharmaceutics, 1993, 92(1/2/3): 197-202.   nanoparticles prepared by solvent injection or  ultrasound
            [46]  TAKAISHI N, SATSU H, SHIMIZU M. Enhanced daunomycin   emulsification[J]. Drug Development and Industrial Pharmacy, 2006,
                 accumulation in human intestinal Caco-2 cells from non-ionic food   32: 1089-1094.
                 emulsifiers unrelated to the p-glycoprotein inhibitory mechanism[J].   [56]  TAKEDA K, FLOOD M. Chronic toxicity and carcinogenicity of
                 Journal of the Agricultural Chemical Society of Japan, 2006, 70(11):   sucrose fatty acid  esters in fischer 344/DuCrj rats[J]. Regulatory
                 2703-2711.                                        Toxicology and Pharmacology, 2002, 35(2): 157-164.
            [47]  KÜRTI L, VESZELKA S, BOCSIK A, et al. The effect of sucrose   [57]  OCAMPO Y C, CARO D C, RIVERA D E, et al. Safety of sucrose
                 esters on a culture model of the nasal barrier[J]. Toxicology in Vitro,   esters from Physalis peruviana L. in a 28-day repeated-dose study in
                 2012, 26(3): 445-454.                             mice[J]. Biomedicine & Pharmacotherapy, 2017, 90: 850-862.


            (上接第 275 页)                                        [84]  WANG Q (王倩), XIONG Y Z (熊玉竹), LUO H Y (罗惠元), et al.
            [77]  LI L X, SUN Y M, GAO B, et al. Preparation and performance of   Optimization  of  parameters using modified recycling oil for
                 polyurethane/mesoporous silica composites for coated urea[J].   preparation of  degradable polyurethane coating material of
                 Materials & Design, 2016, 99: 21-25.              slow-release fertilizer[J]. Journal of Plant Nutrition and  Fertilizers
            [78]  XIE J Z, YANG Y C, GAO B, et al. Magnetic-sensitive nanoparticle   (植物营养与肥料学报), 2019, 25(7): 1257-1264.
                 self-assembled superhydrophobic biopolymer-coated slow-release   [85]  LIU X Q, YANG  Y C, GAO  B,  et al. Organic silicone-modified
                 fertilizer: Fabrication, enhanced performance, and  mechanism[J].   transgenic soybean oil as bio-based coating material for
                 ACS Nano, 2019, 13(3): 3320-3333.                 controlled-release urea fertilizers[J]. Journal of Applied Polymer
            [79]  GUO B C  (郭宝春),  QIU Q H  (邱清华), JIA D  M (贾德民).   Science, 2016, 133(41): 44097.
                 Application of IPN technology in functional polymers[J]. Journal of   [86]  WANG Q, DONG F P, DAI J, et al. Recycled-oil-based polyurethane
                 Functional Materials (功能材料), 2000, (1): 29-32.     modified with organic silicone for controllable release of coated
            [80]  ZHANG S G, YANG Y C, GAO B, et al. Bio-based interpenetrating   fertilizer[J]. Polymers, 2019, 11(3): 454.
                 network polymer composites from locust sawdust as coating material   [87]  DAI C R,  YANG  L, XIE J R,  et al. Nutrient diffusion  control  of
                 for environmentally friendly controlled-release urea fertilizers[J].   fertilizer granules coated with a gradient hydrophobic film[J].
                 Journal of Agricultural and Food Chemistry, 2016, 64(28): 5692-   Colloids and Surfaces A: Physicochemical and Engineering Aspects,
                 5700.                                             2020, 588: 124361.
            [81]  LIU X Q, YANG  Y C,  GAO B,  et al. Environmentally friendly   [88]  ZHANG S G,  YANG  Y  C, GAO  B,  et al. Superhydrophobic
                 slow-release urea fertilizers based on waste frying oil for sustained   controlled-release fertilizers coated with bio-based polymers with
                 nutrient release[J].  ACS Sustainable Chemistry Engineering, 2017,   organosilicon and nano-silica modifications[J]. Journal of Materials
                 5(7): 6036-6045.                                  Chemistry A, 2017, 5(37): 19943-19953.
            [82]  MA X X, CHEN J Q, YANG Y C, et al. Siloxane and polyether dual   [89]  XIE J Z, YANG Y C, GAO B, et al. Biomimetic superhydrophobic
                 modification improves hydrophobicity and interpenetrating polymer   biobased  polyurethane-coated  fertilizer  with  atmosphere
                 network of bio-polymer for coated fertilizers with enhanced slow   “outerwear”[J].  ACS Applied Materials & Interfaces, 2017, 9(18):
                 release characteristics[J]. Chemical Engineering Journal, 2018, 350:   15868-15879.
                 1125-1134.                                    [90]  ZHANG S G, GAO N, SHEN T L,  et al. One-step synthesis  of
            [83]  LIU J L, YANG Y C, GAO B, et al. Bio-based elastic polyurethane   superhydrophobic and multifunctional nano copper-modified bio-
                 for controlled-release urea fertilizer: Fabrication, properties, swelling   polyurethane for controlled-release fertilizer with “multilayer  air
                 and nitrogen release characteristics[J]. Journal of Cleaner Production,   shields”: New insight of improvement mechanism[J]. Journal of
                 2019, (209): 528-537.                             Materials Chemistry A, 2019, 7(16): 9503-9509.
   74   75   76   77   78   79   80   81   82   83   84