Page 79 - 《精细化工》2020年第2期
P. 79
第 2 期 吴 琼,等: 蔗糖酯在药物递送系统的应用研究进展 ·281·
of drug nanoparticles by ternary cogrinding with methacrylic copolymer [48] AHSAN F, ARNOLD J J, MEEZAN E, et al. Sucrose cocoate, a
and sucrose fatty acid ester[J]. Advanced Powder Technology, 2013, component of cosmetic preparations, enhances nasal and ocular
24(1): 246-251. peptide absorption[J]. International Journal of Pharmaceutics, 2003,
[40] CSIZMAZIA E, EROS G, BERKESI O, et al. Ibuprofen penetration 251(1/2): 195-203.
enhance by sucrose ester examined by ATR-FTIR in vivo[J]. [49] RUBA B, IFTIKHAR K, TOURAJ E, et al. Surfactant effects on
Pharmaceutical Development & Technology, 2012, 17(1): 125-128. lipid-based vesicles properties[J]. Journal of Pharmaceutical
[41] TODOSIJEVIĆ M N, BREZESINSKI G, SAVIĆ S D, et al. Sucrose Sciences, 2018, 107(5): 1237-1246.
esters as biocompatible surfactants for penetration enhancement: An [50] YOUAN B B, HUSSAIN A, NGUYEN N T, et al. Evaluation of
insight into the mechanism of penetration enhancement studied using sucrose esters as alternative surfactants in microencapsulation of
stratum corneum model lipids and Langmuir monolayers[J]. European proteins by the solvent evaporation method[J]. American Association
Journal of Pharmaceutical Sciences, 2017, 99: 161-172. of Pharmaceutical Scientists, 2003, 5(2): 123-131.
[42] VALDÉS K, MORILLA M J, ROMERO E, et al. Physicochemical [51] ZHAO Y N, ZHU J, ZHOU H J, et al. Sucrose ester based cationic
characterization and cytotoxic studies of nonionic surfactant vesicles liposomes as effective non-viral gene vectors for gene delivery[J].
using sucrose esters as oral delivery systems[J]. Colloids and Colloids and Surfaces B: Biointerfaces, 2016, 145: 454-461.
Surfaces B: Biointerfaces, 2014, 117: 1-6. [52] ZHAO Y N, LIU A, DU Y Y, et al. Effects of sucrose ester structures
[43] OKAMOTO H, SAKAI T, DANJO K. Effect of sucrose fatty acid on liposome-mediated gene delivery[J]. Acta Biomaterialia, 2018,
esters on transdermal permeation of lidocaine and ketoprofen[J]. 72: 278-286.
Biological & Pharmaceutical Bulletin, 2005, 28(9): 1689-1694. [53] GUAN Y, CHEN H Q, ZHONG Q. Nanoencapsulation of caffeic
[44] CÁZARES-DELGADILLO J, NAIK A, KALIA Y N, et al. Skin acid phenethyl ester in sucrose fatty acid esters to improve activities
permeation enhancement by sucrose esters: A pH-dependent against cancer cells[J]. Journal of Food Engineering, 2019, 246: 125-133.
phenomenon[J]. International Journal of Pharmaceutics, 2005, 297(1/2): [54] EL-ROKH A R, NEGM A, EL-SHAMY M, et al. Sucrose diester of
204-212. aryldihydronaphthalene-type lignans from Echium angustifolium
[45] LERK P C, SUCKER H. Application of sucrose laurate, a new Mill. and their antitumor activity[J]. Phytochemistry, 2018, 149: 155-160.
pharmaceutical excipient, in peroral formulations of cyclosporin A[J]. [55] ARICA Y B, BENOIT J P, LAMPRECHT A. Paclitaxel-loaded lipid
International Journal of Pharmaceutics, 1993, 92(1/2/3): 197-202. nanoparticles prepared by solvent injection or ultrasound
[46] TAKAISHI N, SATSU H, SHIMIZU M. Enhanced daunomycin emulsification[J]. Drug Development and Industrial Pharmacy, 2006,
accumulation in human intestinal Caco-2 cells from non-ionic food 32: 1089-1094.
emulsifiers unrelated to the p-glycoprotein inhibitory mechanism[J]. [56] TAKEDA K, FLOOD M. Chronic toxicity and carcinogenicity of
Journal of the Agricultural Chemical Society of Japan, 2006, 70(11): sucrose fatty acid esters in fischer 344/DuCrj rats[J]. Regulatory
2703-2711. Toxicology and Pharmacology, 2002, 35(2): 157-164.
[47] KÜRTI L, VESZELKA S, BOCSIK A, et al. The effect of sucrose [57] OCAMPO Y C, CARO D C, RIVERA D E, et al. Safety of sucrose
esters on a culture model of the nasal barrier[J]. Toxicology in Vitro, esters from Physalis peruviana L. in a 28-day repeated-dose study in
2012, 26(3): 445-454. mice[J]. Biomedicine & Pharmacotherapy, 2017, 90: 850-862.
(上接第 275 页) [84] WANG Q (王倩), XIONG Y Z (熊玉竹), LUO H Y (罗惠元), et al.
[77] LI L X, SUN Y M, GAO B, et al. Preparation and performance of Optimization of parameters using modified recycling oil for
polyurethane/mesoporous silica composites for coated urea[J]. preparation of degradable polyurethane coating material of
Materials & Design, 2016, 99: 21-25. slow-release fertilizer[J]. Journal of Plant Nutrition and Fertilizers
[78] XIE J Z, YANG Y C, GAO B, et al. Magnetic-sensitive nanoparticle (植物营养与肥料学报), 2019, 25(7): 1257-1264.
self-assembled superhydrophobic biopolymer-coated slow-release [85] LIU X Q, YANG Y C, GAO B, et al. Organic silicone-modified
fertilizer: Fabrication, enhanced performance, and mechanism[J]. transgenic soybean oil as bio-based coating material for
ACS Nano, 2019, 13(3): 3320-3333. controlled-release urea fertilizers[J]. Journal of Applied Polymer
[79] GUO B C (郭宝春), QIU Q H (邱清华), JIA D M (贾德民). Science, 2016, 133(41): 44097.
Application of IPN technology in functional polymers[J]. Journal of [86] WANG Q, DONG F P, DAI J, et al. Recycled-oil-based polyurethane
Functional Materials (功能材料), 2000, (1): 29-32. modified with organic silicone for controllable release of coated
[80] ZHANG S G, YANG Y C, GAO B, et al. Bio-based interpenetrating fertilizer[J]. Polymers, 2019, 11(3): 454.
network polymer composites from locust sawdust as coating material [87] DAI C R, YANG L, XIE J R, et al. Nutrient diffusion control of
for environmentally friendly controlled-release urea fertilizers[J]. fertilizer granules coated with a gradient hydrophobic film[J].
Journal of Agricultural and Food Chemistry, 2016, 64(28): 5692- Colloids and Surfaces A: Physicochemical and Engineering Aspects,
5700. 2020, 588: 124361.
[81] LIU X Q, YANG Y C, GAO B, et al. Environmentally friendly [88] ZHANG S G, YANG Y C, GAO B, et al. Superhydrophobic
slow-release urea fertilizers based on waste frying oil for sustained controlled-release fertilizers coated with bio-based polymers with
nutrient release[J]. ACS Sustainable Chemistry Engineering, 2017, organosilicon and nano-silica modifications[J]. Journal of Materials
5(7): 6036-6045. Chemistry A, 2017, 5(37): 19943-19953.
[82] MA X X, CHEN J Q, YANG Y C, et al. Siloxane and polyether dual [89] XIE J Z, YANG Y C, GAO B, et al. Biomimetic superhydrophobic
modification improves hydrophobicity and interpenetrating polymer biobased polyurethane-coated fertilizer with atmosphere
network of bio-polymer for coated fertilizers with enhanced slow “outerwear”[J]. ACS Applied Materials & Interfaces, 2017, 9(18):
release characteristics[J]. Chemical Engineering Journal, 2018, 350: 15868-15879.
1125-1134. [90] ZHANG S G, GAO N, SHEN T L, et al. One-step synthesis of
[83] LIU J L, YANG Y C, GAO B, et al. Bio-based elastic polyurethane superhydrophobic and multifunctional nano copper-modified bio-
for controlled-release urea fertilizer: Fabrication, properties, swelling polyurethane for controlled-release fertilizer with “multilayer air
and nitrogen release characteristics[J]. Journal of Cleaner Production, shields”: New insight of improvement mechanism[J]. Journal of
2019, (209): 528-537. Materials Chemistry A, 2019, 7(16): 9503-9509.