Page 151 - 《精细化工》2021年第3期
P. 151

第 3 期                 鞠剑峰,等: RuAg/TiO 2 -C 催化剂的制备及对甲醇的电催化氧化性能                            ·571·


            [3]   XUE X D, GU L, CAO X B, et al. One-pot, high-yield synthesis of   230: 252-256.
                 titanate nanotube bundles decorated  by Pd (Au) clusters for  stable   [16]  JU J F, CHEN  X,  SHI Y J, et al. Novel spherical TiO 2 supported
                 electrooxidation of  methanol[J]. Journal of Solid State  Chemistry,   PdNi alloy catalyst for methanol electroxidation[J]. Journal of
                 2009, 182: 2912-2917.                             Industrial Engineering Chemistry, 2014, 20: 1223-1226.
            [4]   GUO  X, GUO D J, QIU X P,  et al. Excellent dispersion and   [17]  REN W J, AI Z H, JIA F L, et al. Low temperature preparation and
                 electrocatalytic properties of Pt  nanoparticles supported on novel   visible light photocatalytic  activity of  mesoporous carbon-doped
                 porous anatase  TiO 2 nanorods[J]. Journal of Power Sources, 2009,   crystalline TiO 2[J]. Applied Catalysis B:  Environmental 2007, 69:
                 194: 281-285.                                     138-144.
            [5]   JU J F, CHEN X, SHI Y J, et al. A novel TiO 2 nanofiber supported   [18]  WANG X M, WANG J, ZOU Q Q, et al. Pd nanoparticles supported
                 PdAg catalyst for  methanolelectro-oxidation[J]. Energy, 2013, 59:   on carbon-modified rutile TiO 2  as a highly efficient catalyst for
                 478-483.                                          formic acid electrooxidation[J]. Electrochimica Acta,  2011, 56:
            [6]   HOSSEINI M G, MOMENI M M.  UV-cleaning properties of Pt   1646-1651.
                 nanoparticle-decorated titania nanotubes in the electro-oxidation  of   [19]  YANG Y R, LIU L, QI Q, et al. A low-cost and stable Fe 2O 3/C-TiO 2
                 methanol: An anti-poisoning and refreshable electrode[J]. Electrochimica   system design for highly efficient photocatalytic H 2 production from
                 Acta, 2012, 70: 1-9.                              seawater[J]. Catalysis Communications, 2020, 143: 106047.
            [7]   HAN J S, YANG L M, YANG L X, et al. PtRu nanoalloys loaded on   [20]  WANG Y J, WILKINSON D P, GUEST A, et al. Synthesis of Pd
                 graphene and TiO 2 nanotubes co-modified Ti wire as an active and   and Nb-doped TiO 2 composite supports and their corresponding
                 stable methanol oxidation electrocatalyst[J]. International Journal of   Pt-Pd alloy catalysts  by a two-step procedure for  the oxygen
                 Hydrogen Energy, 2018, 43: 7338 -7346.            reduction reaction[J]. Journal of Power Sources, 2013, 221: 232-241.
            [8]   XIAO P, GUO X, GUO D J, et al. Study on the co-catalytic effect of   [21]  KHAN S U M, AL-SHAHRY M,  WILLIAM B I J. Efficient
                 titanium dioxide and titanate nanomaterials on platinum-based catalysts   photochemical water splitting by a chemically  modified  n-TiO 2[J].
                 in direct alcohol fuel cells[J]. Electrochimica Acta, 2011, 58: 541-   Science, 2002, 297: 2243-2244.
                 550.                                          [22]  GUO D J, LI H L. High dispersion and electrocatalytic properties of
            [9]   PARK K W, LEE Y W, OH J K,  et al. TiO 2-based nanowire   Pt nanoparticles on SWNT bundles[J]. Journal of Electroanalytical
                 supported catalysts for methanol electrooxidation in direct methanol   Chemistry, 2004, 573: 197-202.
                 fuel cells[J]. Journal of Industrial and Engineering Chemistry, 2011,   [23]  HUANG S Y, YEH C T. Promotion of the electrocatalytic activity of
                 17: 696-699.                                      a bimetallic platinum-ruthenium catalyst by repetitive redox
            [10]  GWEBU S S, NOMNGONGO P N, MAXAKA N W. Pt/CNDs-TiO 2   treatments for direct methanol fuel cell[J]. Journal of Power Sources,
                 electrocatalyst for direct alcohol fuel cells[J]. Materials  Today:   2010, 195: 2638-2643.
                 Proceedings, 2018, 5: 10460-10469.            [24]  SUN Z P, ZHANG X G,  LIANG  Y Y,  et al. Highly dispersed Pd
            [11]  ERCELIK  M, OZDEN A,  SEKER E,  et al. Characterization and   nanoparticles on covalent functional MWNT surfaces for methanol
                 performance evaluation of Pt-Ru/C-TiO 2 anode electrocatalyst for   oxidation in alkaline solution[J]. Electrochemistry Communications,
                 DMFC applications[J]. International Journal of Hydrogen Energy,   2009, 11: 557-561.
                 2017, 42: 21518-21529.                        [25]  HE Z  B,  CHEN J  H, LIU D Y,  et al. Electrodeposition  of Pt-Ru
            [12]  SU N, HU X L, ZHANG J B, et al. Plasma-induced synthesis of Pt   nanoparticles on  carbon nanotubes and their electrocatalytic
                 nanoparticles supported on TiO 2 nanotubes for enhanced  methanol   properties for methanol electrooxidation[J]. Diamond and Related
                 electro-oxidation[J]. Applied Surface Science, 2017, 399: 403-410.     Materials, 2004, 13: 1764-1770.
            [13]  JU J F, CHEN  X, SHI Y J,  et al.  A novel PdAg/TiO 2 nanotube   [26]  RENGARAJ S, LI X Z. Enhanced photocatalytic activity of TiO 2 by
                 electrocatalyst for  methanol electro-oxidation[J]. Fuel,  2013, 114:   doping with Ag for degradation of 2, 4, 6-trichlorophenol in aqueous
                 850-854.                                          suspension[J]. Journal of Molecular Catalysis A:  Chemistry, 2006,
            [14]  JU J F, CHEN X, SHI Y J, et al. Investigation of PdSn nanometals   243: 60-67.
                 alloy supported on spherical TiO 2 for methanol electro-oxidation[J].   [27]  HIRAKAWA K, INOUE M, ABE T. Methanol oxidation on carbon-
                 Powder Technology, 2013, 241: 1-6.                supported  Pt-Ru and TiO 2(Pt-Ru/TiO 2/C) electrocatalyst prepared
            [15]  JU J F,  CHEN X,  SHI Y J,  et al. TiO 2 nanotube supported PdNi   using polygonal barrel-sputtering method[J]. Electrochimica Acta,
                 catalyst for methanol electro-oxidation[J]. Powder Technology, 2012,   2010, 55: 5874-5880.
   146   147   148   149   150   151   152   153   154   155   156