Page 151 - 《精细化工》2021年第3期
P. 151
第 3 期 鞠剑峰,等: RuAg/TiO 2 -C 催化剂的制备及对甲醇的电催化氧化性能 ·571·
[3] XUE X D, GU L, CAO X B, et al. One-pot, high-yield synthesis of 230: 252-256.
titanate nanotube bundles decorated by Pd (Au) clusters for stable [16] JU J F, CHEN X, SHI Y J, et al. Novel spherical TiO 2 supported
electrooxidation of methanol[J]. Journal of Solid State Chemistry, PdNi alloy catalyst for methanol electroxidation[J]. Journal of
2009, 182: 2912-2917. Industrial Engineering Chemistry, 2014, 20: 1223-1226.
[4] GUO X, GUO D J, QIU X P, et al. Excellent dispersion and [17] REN W J, AI Z H, JIA F L, et al. Low temperature preparation and
electrocatalytic properties of Pt nanoparticles supported on novel visible light photocatalytic activity of mesoporous carbon-doped
porous anatase TiO 2 nanorods[J]. Journal of Power Sources, 2009, crystalline TiO 2[J]. Applied Catalysis B: Environmental 2007, 69:
194: 281-285. 138-144.
[5] JU J F, CHEN X, SHI Y J, et al. A novel TiO 2 nanofiber supported [18] WANG X M, WANG J, ZOU Q Q, et al. Pd nanoparticles supported
PdAg catalyst for methanolelectro-oxidation[J]. Energy, 2013, 59: on carbon-modified rutile TiO 2 as a highly efficient catalyst for
478-483. formic acid electrooxidation[J]. Electrochimica Acta, 2011, 56:
[6] HOSSEINI M G, MOMENI M M. UV-cleaning properties of Pt 1646-1651.
nanoparticle-decorated titania nanotubes in the electro-oxidation of [19] YANG Y R, LIU L, QI Q, et al. A low-cost and stable Fe 2O 3/C-TiO 2
methanol: An anti-poisoning and refreshable electrode[J]. Electrochimica system design for highly efficient photocatalytic H 2 production from
Acta, 2012, 70: 1-9. seawater[J]. Catalysis Communications, 2020, 143: 106047.
[7] HAN J S, YANG L M, YANG L X, et al. PtRu nanoalloys loaded on [20] WANG Y J, WILKINSON D P, GUEST A, et al. Synthesis of Pd
graphene and TiO 2 nanotubes co-modified Ti wire as an active and and Nb-doped TiO 2 composite supports and their corresponding
stable methanol oxidation electrocatalyst[J]. International Journal of Pt-Pd alloy catalysts by a two-step procedure for the oxygen
Hydrogen Energy, 2018, 43: 7338 -7346. reduction reaction[J]. Journal of Power Sources, 2013, 221: 232-241.
[8] XIAO P, GUO X, GUO D J, et al. Study on the co-catalytic effect of [21] KHAN S U M, AL-SHAHRY M, WILLIAM B I J. Efficient
titanium dioxide and titanate nanomaterials on platinum-based catalysts photochemical water splitting by a chemically modified n-TiO 2[J].
in direct alcohol fuel cells[J]. Electrochimica Acta, 2011, 58: 541- Science, 2002, 297: 2243-2244.
550. [22] GUO D J, LI H L. High dispersion and electrocatalytic properties of
[9] PARK K W, LEE Y W, OH J K, et al. TiO 2-based nanowire Pt nanoparticles on SWNT bundles[J]. Journal of Electroanalytical
supported catalysts for methanol electrooxidation in direct methanol Chemistry, 2004, 573: 197-202.
fuel cells[J]. Journal of Industrial and Engineering Chemistry, 2011, [23] HUANG S Y, YEH C T. Promotion of the electrocatalytic activity of
17: 696-699. a bimetallic platinum-ruthenium catalyst by repetitive redox
[10] GWEBU S S, NOMNGONGO P N, MAXAKA N W. Pt/CNDs-TiO 2 treatments for direct methanol fuel cell[J]. Journal of Power Sources,
electrocatalyst for direct alcohol fuel cells[J]. Materials Today: 2010, 195: 2638-2643.
Proceedings, 2018, 5: 10460-10469. [24] SUN Z P, ZHANG X G, LIANG Y Y, et al. Highly dispersed Pd
[11] ERCELIK M, OZDEN A, SEKER E, et al. Characterization and nanoparticles on covalent functional MWNT surfaces for methanol
performance evaluation of Pt-Ru/C-TiO 2 anode electrocatalyst for oxidation in alkaline solution[J]. Electrochemistry Communications,
DMFC applications[J]. International Journal of Hydrogen Energy, 2009, 11: 557-561.
2017, 42: 21518-21529. [25] HE Z B, CHEN J H, LIU D Y, et al. Electrodeposition of Pt-Ru
[12] SU N, HU X L, ZHANG J B, et al. Plasma-induced synthesis of Pt nanoparticles on carbon nanotubes and their electrocatalytic
nanoparticles supported on TiO 2 nanotubes for enhanced methanol properties for methanol electrooxidation[J]. Diamond and Related
electro-oxidation[J]. Applied Surface Science, 2017, 399: 403-410. Materials, 2004, 13: 1764-1770.
[13] JU J F, CHEN X, SHI Y J, et al. A novel PdAg/TiO 2 nanotube [26] RENGARAJ S, LI X Z. Enhanced photocatalytic activity of TiO 2 by
electrocatalyst for methanol electro-oxidation[J]. Fuel, 2013, 114: doping with Ag for degradation of 2, 4, 6-trichlorophenol in aqueous
850-854. suspension[J]. Journal of Molecular Catalysis A: Chemistry, 2006,
[14] JU J F, CHEN X, SHI Y J, et al. Investigation of PdSn nanometals 243: 60-67.
alloy supported on spherical TiO 2 for methanol electro-oxidation[J]. [27] HIRAKAWA K, INOUE M, ABE T. Methanol oxidation on carbon-
Powder Technology, 2013, 241: 1-6. supported Pt-Ru and TiO 2(Pt-Ru/TiO 2/C) electrocatalyst prepared
[15] JU J F, CHEN X, SHI Y J, et al. TiO 2 nanotube supported PdNi using polygonal barrel-sputtering method[J]. Electrochimica Acta,
catalyst for methanol electro-oxidation[J]. Powder Technology, 2012, 2010, 55: 5874-5880.